

Welcome to FogLAMP’s documentation!

	Quick Start Guide
	Introduction to FogLAMP

	Installing FogLAMP
	Using the package repository to install FogLAMP
	Ubuntu or Debian

	RedHat & CentOS

	Installing FogLAMP downloaded packages

	Checking package installation

	Run with PostgreSQL

	Starting and stopping FogLAMP

	Troubleshooting FogLAMP

	Running the FogLAMP GUI
	FogLAMP Dashboard

	Managing Data Sources
	Adding Data Sources

	Configuring Data Sources

	Enabling and Disabling Data Sources

	Viewing Data
	Display Graph

	Download Data

	Sending Data to Other Systems
	Adding Data Destinations

	Configuring Data Destinations

	Enabling and Disabling Data Destinations

	Using the OMF plugin

	PI Web API OMF Endpoint

	EDS OMF Endpoint

	OCS OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Backing up and Restoring FogLAMP

	Troubleshooting and Support Information

	Package Uninstallation
	Debian Platform

	RPM Platform

	Processing Data
	Why Use Filters?

	What Can Be Done?

	Where Can it Be Done?
	Adding a South Filter
	Reordering Filters

	Editing Filter Configuration

	Adding Filters To The North

	Some Useful Filters
	Scale

	Metadata

	Delta

	Rate

	FogLAMP Architecture
	FogLAMP Core

	Storage Layer

	Southbound Microservices

	Northbound Microservices

	Filters

	Event Engine

	REST API

	Graphical User Interface

	FogLAMP Plugins
	South Plugins

	North Plugins

	Filter Plugins

	Notification Rule Plugins

	Notification Delivery Plugins

	Securing FogLAMP
	Enabling HTTPS Encryption

	Requiring User Login
	Changing Your Password

	Password Rotation Mechanism

	User Management
	Adding Users

	Changing User Roles

	Reset User Password

	Delete A User

	Certificate Store

	Buffering & Storage
	Configuring The Storage Plugin
	SQLite Plugin Configuration

	Installing A PostgreSQL server
	Ubuntu Install

	CentOS/Red Hat Install

	SQLite Plugin Configuration

	Tuning FogLAMP
	South Service Advanced Configuration
	Tuning Buffer Usage

	Notifications Service
	Notifications
	Notification Rules

	Notification Types
	One shot

	Toggle

	Retriggered

	Notification Delivery

	Installing the Notification Service
	Building Notification Service

	Installing Notification Service Package

	Starting The Notification Service

	Configuring The Notification Service

	Using The Notification Service
	Add A Notification
	Notification Log

	Editing Notifications

	Set Point Control
	Control Functions
	Set Point

	Operation

	Control Paths
	Edge Based Control
	Data Substitution

	Tuning edge control systems

	Troubleshooting the PI-Server integration
	Log files

	How to check the PI Web API is installed and running

	Commands to check the PI WEB API

	Error messages and causes

	Possible solutions to common problems

	Plugin Developer Guide
	Plugins
	Plugins in this version of FogLAMP

	Installing New Plugins

	Writing and Using Plugins
	Common FogLAMP Plugin API
	Plugin Information

	Plugin Initialization

	Plugin Shutdown

	Plugin Reconfigure

	South Plugins
	Polled Mode
	Plugin Poll

	Async IO Mode
	Plugin Start

	Async Handler

	A South Plugin Example In Python: the DHT11 Sensor
	The Hardware

	The Software

	The Plugin

	Building FogLAMP and Adding the Plugin

	Using the Plugin

	South Plugins in C
	Polled Mode
	Plugin Poll

	Plugin Poll Returning Multiple Values

	Async IO Mode
	Plugin Register Ingest

	Plugin Start

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In C/C++: the DHT11 Sensor
	The Software

	The Plugin

	Building FogLAMP and Adding the Plugin

	C++ Support Classes
	Reading

	Configuration Category

	Logger

	Hybrid Plugins

	North Plugins
	The OMF Plugin
	OMF Plugin Configuration

	Changing the OMF Plugin Configuration

	Data in the PI System

	Storage Plugins
	Data and Metadata

	Common Elements for Storage Plugins

	Filter Plugins
	Configuration

	C++ Filter Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Ingest

	Plugin Reconfigure

	Plugin Shutdown

	C++ Helper Class

	C++ Filter Example
	Plugin Interface

	Filter Class

	Filter Class Implementation

	Python Filter API
	Plugin Information

	Plugin Initialisation

	Plugin Ingestion

	Plugin Reconfigure

	Plugin Shutdown

	Python Filter Example

	Notification Delivery Plugins
	Configuration

	Notification Delivery Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Delivery

	Plugin Reconfigure

	Plugin Shutdown

	Testing Your Plugin
	Initial Testing

	C/C++ Common Faults

	Running Under a Debugger
	Running a Service Under the Debugger

	Running a Task Under the Debugger

	Running the Storage Service Under the Debugger

	Using strace

	Memory Leaks and Corruptions

	Python Plugin Info

	REST API Developers Guide
	The FogLAMP REST API
	Introducing the FogLAMP REST API
	Port Usage

	Infrastructure

	Administration API Reference
	Audit Trail
	audit
	GET Audit Entries

	POST Audit Entries

	Configuration Management
	category
	GET categor(ies)

	GET category

	GET category item

	PUT category item

	DELETE category item

	POST category

	Task Management
	task
	GET task

	GET task latest

	GET task by ID

	Cancel task by ID

	Other Administrative API calls
	ping
	GET ping

	statistics
	GET statistics

	GET statistics/history

	User API Reference
	Browsing Assets
	asset
	GET all assets

	GET asset readings

	GET asset reading

	GET asset reading summary

	GET timed average asset reading

	Version History
	FogLAMP v1
	v1.9.2

	v1.9.1

	v1.9.0

	v1.8.2

	v1.8.1

	v1.8.0

	v1.7.0

	v1.6.0

	v1.5.2

	v1.5.1

	v1.5.0

	v1.4.1

	v1.4.0

	v1.3.1
	Fixed Issues

	v1.3
	New Features

	Known Issues

	v1.2
	New Features

	Known Issues

	v1.1.1
	New Features

	Known Issues

	v1.1
	New Features

	Known Issues

	v1.0
	Features

	Known Issues

	Downloads
	Packages

	Download/Clone from GitHub

	Kerberos authentication
	Introduction

	PI-Server as the North endpoint

	North plugin

	FogLAMP server configuration
	IP Address resolution of the KDC

	Kerberos client configuration

	Kerberos keytab file

	Troubleshooting the Kerberos authentication

	Kerberos authentication on RedHat/CentOS

	Plugin Documentation
	FogLAMP South Plugins
	ABB Ability Smart Cloud Service

	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	Beckhoff TwinCAT
	Adding AMS Route

	Map Format
	Example

	Testing

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	Digiducer Vibration Sensor

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Data Translation DT9837 Series

	Edge ML Plugin
	Installation
	Part 1: Get the video feed

	Part 2: Start the Edge ML cluster

	Enviro pHAT Plugin

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	FLIR GW65 Vibration Sensors
	Creating the GW65 South Service

	Installing an MQTT Broker

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Set Point Control

	South MQTT
	Message Payload

	MQTT Sparkplug B

	MQTT South with Payload Scripting
	Configuration

	Object Policy
	Timestamp Treatment
	Time Format

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	PI Web API south Plugin
	Using the Plugin

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management

	Siemens S7 PLC
	Configuring the PLC
	Assigning an IP Address

	Enable PUT/GET operations

	Using the Plugin

	Map Format

	SenseHAT

	Simple REST with Payload Scripting
	Configuration

	Selection Method
	ID Based

	Time Based

	Request URL Handling

	Response Payload Handling

	Timestamp Treatment

	Sinusoid

	System Information

	Advantech USB-4704

	South Webcam Media Plugin
	Execution

	FogLAMP North Plugins
	OMF
	PI Web API OMF Endpoint

	EDS OMF Endpoint

	OCS OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	Graphite

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	InfluxDB Time Series Database

	InfluxDB Cloud

	Kafka Producer

	OPCUA Server
	Hierarchy Definition

	Splunk Data Collector

	ThingSpeak

	FogLAMP Filter Plugins
	Asset Filter
	Asset Rules

	Change Filter

	CSV Writer
	Execution
	Part 1: Get some south service running

	Part 2: Add the filter & attach to service

	Modes
	Periodic

	Continuous

	Cron style collection

	Cascading CSV writer filter

	Behaviour on restart and reconfigure

	How data is rotated?

	Decryption

	Delta Filter

	Down Sample Filter

	Edge ML Filter Plugin
	Installation

	Exponential Moving Average

	Event Rate Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Example

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Sigma Data Cleansing Filter

	Simple Python Filter

	Statistics Filter

	Threshold Filter
	Expressions

	Vibration Features Filter

	FogLAMP Notification Rule Plugins
	Threshold Rule

	Moving Average Rule

	Expression Rule

	Simple-Sigma Rule

	FogLAMP Notification Delivery Plugins
	Amazon Alexa Notification

	Asset Notification

	Configuration Update

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	Jira Ticket Creation
	Text Substitution

	JSON Configuration Update
	JSON Path

	Management Poll Notification
	Plugin Uses

	MQTT Notification

	Conditional Forwarding

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

	Zendesk Ticket Creation
	Text Substitution

Quick Start Guide

	Introduction to FogLAMP

	Installing FogLAMP
	Using the package repository to install FogLAMP
	Ubuntu or Debian

	RedHat & CentOS

	Installing FogLAMP downloaded packages

	Checking package installation

	Run with PostgreSQL

	Starting and stopping FogLAMP

	Troubleshooting FogLAMP

	Running the FogLAMP GUI
	FogLAMP Dashboard

	Managing Data Sources
	Adding Data Sources

	Configuring Data Sources

	Enabling and Disabling Data Sources

	Viewing Data
	Display Graph

	Download Data

	Sending Data to Other Systems
	Adding Data Destinations

	Configuring Data Destinations

	Enabling and Disabling Data Destinations

	Using the OMF plugin

	PI Web API OMF Endpoint

	EDS OMF Endpoint

	OCS OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Backing up and Restoring FogLAMP

	Troubleshooting and Support Information

	Package Uninstallation
	Debian Platform

	RPM Platform

Introduction to FogLAMP

FogLAMP is an open sensor-to-cloud data fabric for the Internet of Things (IoT) that connects people and systems to the information they need to operate their business. It provides a scalable, secure, robust infrastructure for collecting data from sensors, processing data at the edge and transporting data to historian and other management systems. FogLAMP can operate over the unreliable, intermittent and low bandwidth connections often found in IoT applications.

FogLAMP is implemented as a collection of microservices which include:

	Core services, including security, monitoring, and storage

	Data transformation and alerting services

	South services: Collect data from sensors and other FogLAMP systems

	North services: Transmit data to historians and other systems

	Edge data processing applications

Services can easily be developed and incorporated into the FogLAMP framework. The FogLAMP Developer Guides describe how to do this.

Installing FogLAMP

FogLAMP is extremely lightweight and can run on inexpensive edge devices, sensors and actuator boards. For the purposes of this manual, we assume that all services are running on a Raspberry Pi running the Raspbian operating system. Be sure your system has plenty of storage available for data readings.

If your system does not have Raspbian pre-installed, you can find instructions on downloading and installing it at https://www.raspberrypi.org/downloads/raspbian/. After installing Raspbian, ensure you have the latest updates by executing the following commands on your FogLAMP server:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get update

You can obtain FogLAMP in three ways:

	Dianomic Systems hosts a package repository that allows the FogLAMP packages to be loaded using the system package manage. This is the recommended method for long term use of FogLAMP as it gives access to all the FogLAMP plugins and provides a route for easy upgrade of the FogLAMP packages. This also has the advantages that once the repository is configured you are able to install new plugins directly from the FogLAMP user interface without the need to resort to the Linux command line.

	Dianomic Systems offers pre-built, certified binaries of FogLAMP for Debian using either Intel or ARM architectures. This is perhaps the simplest method for users not used to Linux. You can download the complete set of packages from https://foglamp.readthedocs.io/en/latest/92_downloads.html.

	As source code from https://github.com/foglamp/. Instructions for downloading and building FogLAMP source code can be found in the FogLAMP Developer’s Guide

In general, FogLAMP installation will require the following packages:

	FogLAMP core

	FogLAMP user interface

	One or more FogLAMP South services

	One or more FogLAMP North service (OSI PI and OCS north services are included in FogLAMP core)

Using the package repository to install FogLAMP

If you choose to use the Dianomic Systems package repository to install the packages you will need to follow the steps outlined below for the particular platform you are using.

Ubuntu or Debian

On a Ubuntu or Debian system, including the Raspberry Pi, the package manager that is supported in apt. You will need to add the Dianomic Systems archive server into the configuration of apt on your system. The first thing that most be done is to add the key that is used to verify the package repository. To do this run the command

wget -q -O - http://archives.dianomic.com/KEY.gpg | sudo apt-key add -

Once complete you can add the repository itself into the apt configuration file /etc/apt/sources.list. The simplest way to do this is the use the add-apt-repository command. The exact command will vary between systems;

	Raspberry Pi does not have an apt-add-repository command, the user must edit the apt sources file manually

sudo vi /etc/apt/sources.list

and add the line

deb http://archives.dianomic.com/foglamp/latest/buster/armv7l/ /

to the end of the file.

	Users with an Intel or AMD system with Ubuntu 18.04 should run

sudo add-apt-repository "deb http://archives.dianomic.com/foglamp/latest/ubuntu1804/x86_64/ / "

	Users with an Intel or AMD system with Ubuntu 20.04 should run

sudo add-apt-repository "deb http://archives.dianomic.com/foglamp/latest/ubuntu2004/x86_64/ / "

Note

We do not support the aarch64 architecture with Ubuntu 20.04 yet.

	Users with an Arm system with Ubuntu 18.04, such as the Odroid board, should run

sudo add-apt-repository "deb http://archives.dianomic.com/foglamp/latest/ubuntu1804/aarch64/ / "

	Users of the Mendel operating system on a Google Coral create the file /etc/apt/sources.list.d/foglamp.list and insert the following content

deb http://archives.dianomic.com/foglamp/latest/mendel/aarch64/ /

Once the repository has been added you must inform the package manager to go and fetch a list of the packages it supports. To do this run the command

sudo apt -y update

You are now ready to install the FogLAMP packages. You do this by running the command

sudo apt -y install *package*

You may also install multiple packages in a single command. To install the base foglamp package, the foglamp user interface and the sinusoid south plugin run the command

sudo DEBIAN_FRONTEND=noninteractive apt -y install foglamp foglamp-gui foglamp-south-sinusoid

RedHat & CentOS

The RedHat and CentOS flavors of Linux use a different package management system, known as yum. FogLAMP also supports a package management system for the yum package manager.

To add the foglamp repository to the yum package manager run the command

sudo rpm --import http://archives.dianomic.com/RPM-GPG-KEY-foglamp

CentOS users should then create a file called foglamp.repo in the directory /etc/yum.repos.d and add the following content

[foglamp]
name=foglamp Repository
baseurl=http://archives.dianomic.com/foglamp/latest/centos7/x86_64/
enabled=1
gpgkey=http://archives.dianomic.com/RPM-GPG-KEY-foglamp
gpgcheck=1

Users of RedHat systems should do the same, however the files content is slightly different

[foglamp]
name=foglamp Repository
baseurl=http://archives.dianomic.com/foglamp/latest/rhel7/x86_64/
enabled=1
gpgkey=http://archives.dianomic.com/RPM-GPG-KEY-foglamp
gpgcheck=1

There are a few pre-requisites that need to be installed on these platforms, they differ slightly between the two of them.

On CentOS 7 run the commands

sudo yum install -y centos-release-scl-rh
sudo yum install -y epel-release

On RedHat 7 run the command

sudo yum-config-manager --enable 'Red Hat Software Collections RPMs for Red Hat Enterprise Linux 7 Server from RHUI'
sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

You can now install and upgrade foglamp packages using the yum command. For example to install foglamp and the foglamp GUI you run the command

sudo yum install -y foglamp foglamp-gui

Installing FogLAMP downloaded packages

Assuming you have downloaded the packages from the download link given above. Use SSH to login to the system that will host FogLAMP services. For each FogLAMP package that you choose to install, type the following command:

sudo apt -y install PackageName

The key packages to install are the FogLAMP core and the FogLAMP User Interface:

sudo DEBIAN_FRONTEND=noninteractive apt -y install ./foglamp-1.8.0-armv7l.deb
sudo apt -y install ./foglamp-gui-1.8.0.deb

You will need to install one of more South plugins to acquire data. You can either do this now or when you are adding the data source. For example, to install the plugin for the Sense HAT sensor board, type:

sudo apt -y install ./foglamp-south-sensehat-1.8.0-armv7l.deb

You may also need to install one or more North plugins to transmit data. Support for OSIsoft PI and OCS are included with the FogLAMP core package, so you don’t need to install anything more if you are sending data to only these systems.

Checking package installation

To check what packages have been installed, ssh into your host system and use the dpkg command:

dpkg -l | grep 'foglamp'

Run with PostgreSQL

To start FogLAMP with PostgreSQL, first you need to install the PostgreSQL package explicitly. See the below links for setup

For Debian Platform

For RPM Platform

Also you need to change the value of Storage plugin. See Configure Storage Plugin from GUI or with below curl command

$ curl -sX PUT localhost:8081/foglamp/category/Storage/plugin -d '{"value": "postgres"}'
{
 "description": "The main storage plugin to load",
 "type": "string",
 "order": "1",
 "displayName": "Storage Plugin",
 "default": "sqlite",
 "value": "postgres"
}

Now, it’s time to restart FogLAMP. Thereafter you will see FogLAMP is running with PostgreSQL.

Starting and stopping FogLAMP

FogLAMP administration is performed using the “foglamp” command line utility. You must first ssh into the host system. The FogLAMP utility is installed by default in /usr/local/foglamp/bin.

The following command options are available:

	Start: Start the FogLAMP system

	Stop: Stop the FogLAMP system

	Status: Lists currently running FogLAMP services and tasks

	Reset: Delete all data and configuration and return FogLAMP to factory settings

	Kill: Kill FogLAMP services that have not correctly responded to Stop

	Help: Describe FogLAMP options

For example, to start the FogLAMP system, open a session to the FogLAMP device and type:

/usr/local/foglamp/bin/foglamp start

Troubleshooting FogLAMP

FogLAMP logs status and error messages to syslog. To troubleshoot a FogLAMP installation using this information, open a session to the FogLAMP server and type:

grep -a 'foglamp' /var/log/syslog | tail -n 20

Running the FogLAMP GUI

FogLAMP offers an easy-to-use, browser-based GUI. To access the GUI, open your browser and enter the IP address of the FogLAMP server into the address bar. This will display the FogLAMP dashboard.

You can easily use the FogLAMP UI to monitor multiple FogLAMP servers. To view and manage a different server, click “Settings” in the left menu bar. In the “Connection Setup” pane, enter the IP address and port number for the new server you wish to manage. Click the “Set the URL & Restart” button to switch the UI to the new server.

If you are managing a very lightweight server or one that is connected via a slow network link, you may want to reduce the UI update frequency to minimize load on the server and network. You can adjust this rate in the “GUI Settings” pane of the Settings screen. While the graph rate and ping rate can be adjusted individually, in general you should set them to the same value.

FogLAMP Dashboard

	[image: dashboard]

This screen provides an overview of FogLAMP operations. You can customize the information and time frames displayed on this screen using the drop-down menus in the upper right corner. The information you select will be displayed in a series of graphs.

You can choose to view a graph of any of the sensor reading being collected by the FogLAMP system. In addition, you can view graphs of the following system-wide information:

	Readings: The total number of data readings collected by FogLAMP since system boot

	Buffered: The number of data readings currently stored by the system

	Discarded: Number of data readings discarded before being buffered (due to data errors, for example)

	Unsent: Number of data readings that were not sent successfully

	Purged: The total number of data readings that have been purged from the system

	Unsnpurged: The number of data readings that were purged without being sent to a North service.

Managing Data Sources

	[image: south_services]

Data sources are managed from the South Services screen. To access this screen, click on “South” from the menu bar on the left side of any screen.

The South Services screen displays the status of all data sources in the FogLAMP system. Each data source will display its status, the data assets it is providing, and the number of readings that have been collected.

Adding Data Sources

To add a data source, you will first need to install the plugin for that sensor type. If you have not already done this, open a terminal session to your FogLAMP server. Download the package for the plugin and enter:

sudo apt -y install PackageName

Once the plugin is installed return to the FogLAMP GUI and click on “Add+” in the upper right of the South Services screen. FogLAMP will display a series of 3 screens to add the data source:

	The first screen will ask you to select the plugin for the data source from the list of installed plugins. If you do not see the plugin you need, refer to the Installing FogLAMP section of this manual. In addition, this screen allows you to specify a display name for the data source.

	The second screen allows you to configure the plugin and the data assets it will provide.

Note

Every data asset in FogLAMP must have a unique name. If you have multiple sensors using the same plugin, modify the asset names on this screen so they are unique.

Some plugins allow you to specify an asset name prefix that will apply to all the asset names for that sensor. Refer to the individual plugin documentation for descriptions of the fields on this screen.

	If you modify any of the configuration fields, click on the “save” button to save them.

	The final screen allows you to specify whether the service will be enabled immediately for data collection or await enabling in the future.

Configuring Data Sources

	[image: south_service_config]

To modify the configuration of a data source, click on its name in the South Services screen. This will display a list of all parameters available for that data source. If you make any changes, click on the “save” button in the top panel to save the new configuration. Click on the “x” button in the upper right corner to return to the South Services screen.

Enabling and Disabling Data Sources

To enable or disable a data source, click on its name in the South Services screen. Under the list of data source parameters, there is a check box to enable or disable the service. If you make any changes, click on the “save” button in the bottom panel near the check box to save the new configuration.

Viewing Data

	[image: viewing_data]

You can inspect all the data buffered by the FogLAMP system on the Assets page. To access this page, click on “Assets & Readings” from the left-side menu bar.

This screen will display a list of every data asset in the system. Alongside each asset are two icons; one to display a graph of the asset and another to download the data stored for that asset as a CSV file.

Display Graph

[image: ../_images/graph_icon.jpg]
By clicking on the graph button next to each asset name, you can view a graph of individual data readings. A graph will be displayed with a plot for each data point within the asset.

	[image: view_graph]

It is possible to change the time period to which the graph refers by use of the plugin list in the top left of the graph.

	[image: view_times]

Where an asset contains multiple data points each of these is displayed in a different colour. Graphs for particular data points can be toggled on and off by clicking on the key at the top of the graph. Those data points not should will be indicated by striking through the name of the data point.

	[image: view_hide]

A summary tab is also available, this will show the minimum, maximum and average values for each of the data points. Click on Summary to show the summary tab.

	[image: view_summary]

Download Data

[image: ../_images/download_icon.jpg]
By clicking on the download icon adjacent to each asset you can download the stored data for the asset. The format of the file is download is a CSV file that is designed to be loaded int a spreadsheet such as Excel, Numbers or OpenOffice Calc.

The file contains a header row with the names of the data points within the asset, the first column is always the timestamp when the reading was taken, the header for this being timestamp. The data is sorted in chronological order with the newest data first.

	[image: view_spreadsheet]

Sending Data to Other Systems

	[image: north_services]

Data destinations are managed from the North Services screen. To access this screen, click on “North” from the menu bar on the left side of any screen.

The North Services screen displays the status of all data sending processes in the FogLAMP system. Each data destination will display its status and the number of readings that have been collected.

Adding Data Destinations

To add a data destination, click on “Create North Instance+” in the upper right of the North Services screen. FogLAMP will display a series of 3 screens to add the data destination:

	The first screen will ask you to select the plugin for the data destination from the list of installed plugins. If you do not see the plugin you need, refer to the Installing FogLAMP section of this manual. In addition, this screen allows you to specify a display name for the data destination. In addition, you can specify how frequently data will be forwarded to the destination in days, hours, minutes and seconds. Enter the number of days in the interval in the left box and the number of hours, minutes and seconds in format HH:MM:SS in the right box.

	The second screen allows you to configure the plugin and the data assets it will send. See the section below for specifics of configuring a PI, EDS or OCS destination.

	The final screen loads the plugin. You can specify whether it will be enabled immediately for data sending or to await enabling in the future.

Configuring Data Destinations

To modify the configuration of a data destination, click on its name in the North Services screen. This will display a list of all parameters available for that data source. If you make any changes, click on the “save” button in the top panel to save the new configuration. Click on the “x” button in the upper right corner to return to the North Services screen.

Enabling and Disabling Data Destinations

To enable or disable a data source, click on its name in the North Services screen. Under the list of data source parameters, there is a check box to enable or disable the service. If you make any changes, click on the “save” button in the bottom panel near the check box to save the new configuration.

Using the OMF plugin

OSISoft data historians are one of the most common destinations for FogLAMP data. FogLAMP supports the full range of OSISoft historians; the PI System, Edge Data Store (EDS) and OSISoft Cloud Services (OCS). To send data to a PI server you may use either the older PI Connector Relay or the newer PI Web API OMF endpoint. It is recommended that new users use the PI Web API OMF endpoint rather then the Connector Relay which is no longer supported by OSIsoft.

PI Web API OMF Endpoint

To use the PI Web API OMF endpoint first ensure the OMF option was included in your PI Server when it was installed.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_pi_web_config]

Select PI Web API from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case PI Web API.

	Send full structure: Used to control if AF structure messages are sent to the PI server. If this is turned off then the data will not be placed in the asset framework.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: The hostname or address of the PI Server.

	Server port: The port the PI Web API OMF endpoint is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Asset Framework

	
	Asset Framework Hierarchies Tree: The location in the Asset Framework into which the data will be inserted. All data will be inserted at this point in the Asset Framework unless a later rule overrides this.

	Asset Framework Hierarchies Rules: A set of rules that allow specific readings to be placed elsewhere in the Asset Framework. These rules can be based on the name of the asset itself or some metadata associated with the asset. See Asset Framework Hierarchy Rules

	
	PI Web API authentication

	
	PI Web API Authentication Method: The authentication method to be used, anonymous equates to no authentication, basic authentication requires a user name and password and Kerberos allows integration with your single sign on environment.

	PI Web API User Id: The user name to authenticate with the PI Web API.

	PI Web API Password: The password of the user we are using to authenticate.

	PI Web API Kerberos keytab file: The Kerberos keytab file used to authenticate.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

EDS OMF Endpoint

To use the OSISoft Edge Data Store first install Edge Data Store on the same machine as your FogLAMP instance. It is a limitation of Edge Data Store that it must reside on the same host as any system that connects to it with OMF.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_eds_config]

Select Edge Data Store from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case Edge Data Store.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: The hostname or address of the PI Server. This must be the localhost for EDS.

	Server port: The port the Edge Datastore is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

OCS OMF Endpoint

Go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_ocs_config]

Select OSIsoft Cloud Services from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case OSIsoft Cloud Services.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Authentication

	
	OCS Namespace: Your namespace within the OSISoft Cloud Services.

	OCS Tenant ID: Your OSISoft Cloud Services tenant ID for your account.

	OCS Client ID: Your OSISoft Cloud Services client ID for your account.

	OCS Client Secret: Your OCS client secret.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

PI Connector Relay

The PI Connector Relay was the original mechanism by which OMF data
could be ingesting into a PI Server, this has since been replaced by
the PI Web API OMF endpoint. It is recommended that all new deployments
should use the PI Web API endpoint as the Connector Relay has now been
discontinued by OSIsoft. To use the Connector Relay, open and sign into
the PI Relay Data Connection Manager.

	[image: PI_connectors]

To add a new connector for the FogLAMP system, click on the drop down menu to the right of “Connectors” and select “Add an OMF application”. Add and save the requested configuration information.

	[image: PI_connect]

Connect the new application to the OMF Connector Relay by selecting the new FogLAMP application, clicking the check box for the OMF Connector Relay and then clicking “Save Configuration”.

	[image: PI_token]

Finally, select the new FogLAMP application. Click “More” at the bottom of the Configuration panel. Make note of the Producer Token and Relay Ingress URL.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_connector_relay_config]

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case the Connector Relay.

	Server hostname: The hostname or address of the Connector Relay.

	Server port: The port the Connector Relay is listening on. Leave as 0 if you are using the default port.

	Producer Token: The Producer Token provided by PI

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

Naming Scheme

The naming of objects in the asset framework and of the attributes of
those objects has a number of constraints that need to be understood when
storing data into a PI Server using OMF. An important factor in this is
the stability of your data structures. If, in your environment you have
objects are liable to change, i.e. the types of attributes change or
the number of attributes change between readings, then you may wish to
take a different naming approach to if they do not.

This occurs because of a limitation of the OMF interface to the PI
server. Data is sent to OMF in a number of stages, one of these is the
definition of the types for the AF Objects. OMF let’s a type be defined,
but once defined it can not be changed. A new type must be created rather
than changing the existing type. This means a new asset framework object
is created each time a type changes.

The OMF plugin names objects in the asset framework based upon the asset
name in the reading within FogLAMP. Asset names are typically added to
the readings in the south plugins, however they may be altered by filters
between the south ingest and the north egress points in the data
pipeline. Asset names can be overridden using the OMF Hints mechanism
described below.

The attribute names used within the objects in the PI System are based
on the names of the data points within each reading within FogLAMP. Again
OMF Hints can be used to override this mechanism.

The naming used within the objects in the Asset Framework is controlled
by the Naming Scheme option

	Concise

	No suffix or prefix is added to the asset name and property name when
creating the objects in the AF framework and Attributes in the PI
server. However if the structure of an asset changes a new AF Object
will be created which will have the suffix -type*x* appended to it.

	Use Type Suffix

	The AF Object names will be created from the asset names by appending
the suffix -type*x* to the asset name. If and when the structure
of an asset changes a new object name will be created with an
updated suffix.

	Use Attribute Hash

	Attribute names will be created using a numerical hash as a prefix.

	Backward Compatibility

	The naming reverts to the rules that were used by version 1.9.1 and
earlier of FogLAMP, both type suffices and attribute hashes will be
applied to the naming.

Asset Framework Hierarchy Rules

The asset framework rules allow the location of specific assets within
the PI Asset Framework to be controlled. There are two basic type of hint;

	Asset name placement, the name of the asset determines where in the
Asset Framework the asset is placed

	Meta data placement, metadata within the reading determines where
the asset is placed in the Asset Framework

The rules are encoded within a JSON document, this document contains
two properties in the root of the document; one for name based rules
and the other for metadata based rules

{
 "names" :
 {
 "asset1" : "/Building1/EastWing/GroundFloor/Room4",
 "asset2" : "Room14"
 },
 "metadata" :
 {
 "exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 },
 "nonexist" :
 {
 "unit" : "Uncalibrated"
 }
 "equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }
 "notequal" :
 {
 "building" :
 {
 "plant" : "/Office/Environment"
 }
 }
 }
}

The name type rules are simply a set of asset name and AF location
pairs. The asset names must be complete names, there is no pattern
matching within the names.

The metadata rules are more complex, four different tests can be applied;

	exists: This test looks for the existence of the named datapoint within the asset.

	nonexist: This test looks for the lack of a named datapoint within the asset.

	equal: This test looks for a named data point having a given value.

	notequal: This test looks for a name data point having a value different from that specified.

The exist and nonexist tests take a set of name/value pairs that
are tested. The name is the datapoint name to examine and the value is
the asset framework location to use. For example

"exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 }

If an asset has a data point called temperature in will be stored in
the AF hierarchy temperatures, if the asset had a data point called
power the asset will be placed in the AF hierarchy /Electrical/Power.

The equal and notequal tests take a object as a child, the name of
the object is data point to examine, the child nodes a sets of values
and locations. For example

"equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }

In this case if the asset has a data point called room with a value
of 4 then the asset will be placed in the AF location ElectricalLab,
if it has a value of 6 then it is placed in the AF location FluidLab.

If an asset matches multiple rules in the ruleset it will appear in
multiple locations in the hierarchy, the data is shared between each of
the locations.

If an OMF Hint exists within a particular reading this will take
precedence over generic rules.

The AF location may be a simple string or it may also include
substitutions from other data points within the reading. For example
of the reading has a data point called room that contains the room
in which the readings was taken, an AF location of /BuildingA/${room}
would put the reading in the asset framework using the value of the room
data point. The reading

"reading" : {
 "temperature" : 23.4,
 "room" : "B114"
 }

would be put in the AF at /BuildingA/B114 whereas a reading of the form

"reading" : {
 "temperature" : 24.6,
 "room" : "2016"
 }

would be put at the location /BuildingA/2016.

It is also possible to define defaults if the referenced data point
is missing. Therefore in our example above if we used the location
/BuildingA/${room:unknown} a reading without a room data point would
be place in /BuildingA/unknown. If no default is given and the data
point is missing then the level in the hierarchy is ignore. E.g. if we
use our original location /BuildingA/${room} and we have the reading

"reading" : {
 "temperature" : 22.8,
 }

this reading would be stored in /BuildingA.

OMF Hints

The OMF plugin also supports the concept of hints in the actual data
that determine how the data should be treated by the plugin. Hints are
encoded in a specially name data point within the asset, OMFHint. The
hints themselves are encoded as JSON within a string.

Number Format Hints

A number format hint tells the plugin what number format to insert data
into the PI Server as. The following will cause all numeric data within
the asset to be written using the format float32.

"OMFHint" : { "number" : "float32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Integer Format Hints

an integer format hint tells the plugin what integer format to insert
data into the PI Server as. The following will cause all integer data
within the asset to be written using the format integer32.

"OMFHint" : { "number" : "integer32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Type Name Hints

A type name hint specifies that a particular name should be used when
defining the name of the type that will be created to store the object
in the Asset Framework. This will override the Naming Scheme currently
configured.

"OMFHint" : { "typeName" : "substation" }

Type Hint

A type hint is similar to a type name hint, but instead of defining
the name of a type to create it defines the name of an existing type
to use. The structure of the asset must match the structure of the
existing type with the PI Server, it is the responsibility of the person
that adds this hint to ensure this is the case.

"OMFHint" : { "type" : "pump" }

Tag Name Hint

Specifies that a specific tag name should be used when storing data in the PI server.

"OMFHint" : { "tagName" : "AC1246" }

Datapoint Specific Hint

Hints may also be targeted to specific data points within an asset by
using the datapoint hint. A datapoint hint takes a JSON object as
it’s value, this object defines the name of the datapoint and the hint
to apply.

"OMFHint" : { "datapoint" : { "name" : "voltage:, "number" : "float32" } }

The above hint applies to the datapoint voltage in the asset and
applies a number format hint to that datapoint.

Asset Framework Location Hint

An asset framework location hint can be added to a reading to control
the placement of that asset within the Asset Framework. An asset framework
hint would be as follow

"OMFHint" : { "AFLocation" : "/UK/London/TowerHill/Floor4" }

Adding OMF Hints

An OMF Hint is implemented as a string data point on a reading with
the data point name of OMFHint. It can be added at any point int he
processing of the data, however a specific plugin is available for adding
the hints, the OMFHint filter plugin.

Backing up and Restoring FogLAMP

	[image: backup]

You can make a complete backup of all FogLAMP data and configuration. To do this, click on “Backup & Restore” in the left menu bar. This screen will show a list of all backups on the system and the time they were created.
To make a new backup, click the “Backup” button in the upper right corner of the screen. You will briefly see a “Running” indicator in the lower left of the screen. After a period of time, the new backup will appear in the list. You may need to click the refresh button in the upper left of the screen to refresh the list.
You can restore, delete or download any backup simply by clicking the appropriate button next to the backup in the list.

Troubleshooting and Support Information

	[image: support]

FogLAMP keep detailed logs of system events for both auditing and troubleshooting use. To access them, click “Logs” in the left menu bar. There are five logs in the system:

	Audit: Tracks all configuration changes and data uploads performed on the FogLAMP system.

	Notifications: If you are using the FogLAMP notification service this log will give details of notifications that have been triggered

	Packages: This log will give you information about the installation and upgrade of FogLAMP packages for services and plugins.

	System: All events and scheduled tasks and their status.

	Tasks: The most recent scheduled tasks that have run and their status

If you have a service contract for your FogLAMP system, your support technician may ask you to send system data to facilitate troubleshooting an issue. To do this, click on “Support” in the left menu and then “Request New” in the upper right of the screen. This will create an archive of information. Click download to retrieve this archive to your system so you can email it to the technician.

Package Uninstallation

Debian Platform

Use the apt or the apt-get command to uninstall FogLAMP:

sudo apt -y purge foglamp

RPM Platform

sudo yum -y remove foglamp

Note

You may notice the warning in the last row of the package removal output:

dpkg: warning: while removing foglamp, directory ‘/usr/local/foglamp’ not empty so not removed

This is due to the fact that the data directory (/usr/local/foglamp/data by default) has not been removed, in case we might want to analyze or reuse the data further.
So, if you want to remove foglamp completely from your system, then do rm -rf /usr/local/foglamp directory.

Processing Data

We have already seen that FogLAMP can collect data from a variety of sources, buffer it locally and send it on to one or more destination systems. It is also possible to process the data within FogLAMP to edit, augment or remove data as it traverses the FogLAMP system. In the same way FogLAMP makes extensive use of plugin components to add new sources of data and new destinations for that data, FogLAMP also uses plugins to add processing filters to the FogLAMP system.

Why Use Filters?

The concept behind filters is to create a set of small, useful pieces of
functionality that can be inserted into the data flow from the south data
ingress side to the north data egress side. By making these elements
small and dedicated to a single task it increases the re-usability of
the filters and greatly improves the chances when a new requirement
is encountered that it can be satisfied by creating a filter pipeline
from existing components or by augmenting existing components with the
addition of any incremental processing required. The ultimate aim being
to be able to create new applications within FogLAMP by merely configuring
filters from the existing pool of available filters into a suitable pipeline
without the need to write any new code.

What Can Be Done?

Data processing is done via plugins that are known as filters in FogLAMP, therefore it is not possible to give a definitive list of all the different processing that can occur, the design intent is that it is expandable by the user. The general types of things that can be done are;

	Modify a value in a reading. This could be as simple as applying a scale factor to convert from one measurement scale to another or more complex mathematical operation.

	Modify asset or datapoint names. Perform a simple textual substitution in order to change the name of an asset or a data point within that asset.

	Add a new calculated value. A new value can be calculated from a set of values, either based over a time period or based on a combination of different values, e.g. calculate power from voltage and current.

	Add metadata to an asset. This allows data such as units of measurement or information about the data source to be added to the data.

	Compress data. Only send data forward when the data itself shows significant change from previous values. This can be a useful technique to save bandwidth in low bandwidth or high cost network connections.

	Conditionally forward data. Only send data when a condition is satisfied or send low rate data unless some interesting condition is met.

	Data conditioning. Remove data from the data stream if the values are suspect or outside of reasonable conditions.

Where Can it Be Done?

Filters can be applied in two locations in the FogLAMP system;

	In the south service as data arrives in FogLAMP and before it is added to the storage subsystem for buffering.

	In the north tasks as the data is sent out to the upstream systems that receive data from the FogLAMP system.

More than one filter can be added to a single south or north within a FogLAMP instance. Filters are placed in an ordered pipeline of filters that are applied to the data in the order of the pipeline. The output of the first filter becomes the input to the second. Filters can thus be combined to perform complex sets of operations on a particular data stream into FogLAMP or out of FogLAMP.

The same filter plugin can appear in multiple places within a filter pipeline, a different instance is created for each and each one has its own configuration.

Adding a South Filter

In the following example we will add a filter to a south service. The filter we will use is the expression filter and we will convert the incoming value to a logarithmic scale. The south plugin used in this simple example is the sinusoid plugin that creates a simulated sine wave.

The process starts by selecting the South services in the FogLAMP GUI from the left-hand menu bar. Then click on the south service of interest. This will display a dialog that allows the south service to be edited.

	[image: filter_south]

Towards the bottom of this dialog is a section labeled Applications with a + icon to the right, select the + icon to add a filter to the south service. A filter wizard is now shown that allows you to select the filter you wish to add and give that filter a name.

	[image: filter_add]

Select the expression filter and enter a name in the dialog. Now click on the Next button. A new page in the wizard appears that allows the configuration of the filter.

	[image: filter_expression]

In the case of our expression filter we should add the expression we wish to execute log(sinusoid) and the name of the datapoint we wish to put the result in, LogSine. We can also choose to enable or disable the execution of this filter. We will enable it and click on Done to complete adding the filter.

Click on Save in the south edit dialog and our filter is now installed and running.

If we select the Assets & Readings option from the menu bar we can examine the sinusoid asset and view a graph of that asset. We will now see a second datapoint has been added, LogSine which is the result of executing our expression in the filter.

	[image: filter_data]

A second filter can be added in the same way, for example a metadata filter to create a pipeline. Now when we go back and view the south service we see two applications in the dialog.

	[image: filter_pipeline]

Reordering Filters

The order in which the filters are applied can be changed in the south service dialog by clicking and dragging one filter above another in the Applications section of dialog.

	[image: filter_reorder]

Filters are executed in a top to bottom order always. It may not matter in some cases what order a filter is executed in, in others it can have significant effect on the result.

Editing Filter Configuration

A filters configuration can be altered from the south service dialog by selecting the down arrow to the right of the filter name. This will open the edit area for that filter and show the configuration that can be altered.

	[image: filter_edit]

You can also remove a filter from the pipeline of filters by select the trash can icon at the bottom right of the edit area for the filter.

Adding Filters To The North

Filters can also be added to the north in the same way as the south. The same set of filters can be applied, however some may be less useful in the north than in the south as they apply to all assets that are sent north.

In this example we will use the metadata filter to label all the data that goes north as coming via a particular FogLAMP instance. As with the South service we start by selecting our north task from the North menu item in the left-hand menu bar.

	[image: filter_north]

At the bottom of the dialog there is a Applications area, you may have to scroll the dialog to find it, click on the + icon. A selection dialog appears that allows you to select the filter to use. Select the metadata filter.

	[image: filter_select]

After clicking Next you will be shown the configuration page for the particular filter you have chosen. We will edit the JSON that defines the metadata tags to add and set a name of floor and a value of 1.

	[image: filter_floor]

After enabling and clicking on Done we save the north changes. All assets sent to this PI Server connection will now be tagged with the tag “floor” and value “1”.

Although this is a simple example of labeling data other things can be done here, such as limiting the rate we send data to the PI Server until an interesting condition becomes true, perhaps to save costs on an expensive link or prevent a network becoming loaded until normal operating conditions. Another option might be to block particular assets from being sent on this link, this could be useful if you have two destinations and you wish to send a subset of assets to each.

This example used a PI Server as the destination, however the same mechanism and filters may be used for any north destination.

Some Useful Filters

A number of simple filters are worthy of mention here, a complete list of the currently available filters in FogLAMP can be found in the section Filter Plugins.

Scale

The filter foglamp-filter-scale applies a scale factor and offset to the numeric values within an asset. This is useful for operations such as changing the unit of measurement of a value. An example might be to convert a temperature reading from Centigrade to Fahrenheit.

Metadata

The filter foglamp-filter-metadata will add metadata to an asset. This could be used to add information such as unit of measurement, machine data (make, model, serial no) or the location of the asset to the data.

Delta

The filter foglamp-filter-delta allows duplicate data to be removed, only forwarding data that changes by more than a configurable percentage. This can be useful if a value does not change often and there is a desire not to forward all the similar values in order to save network bandwidth or reduce storage requirements.

Rate

The filter foglamp-filter-rate is similar to the delta filter above, however it forwards data at a fixed rate that is lower the rate of the oncoming data but can send full rate data should an interesting condition be detected. The filter is configured with a rate to send data, the values sent at that rate are an average of the values seen since the last value was sent.

A rate of one reading per minute for example would average all the values for 1 minute and then send that average as the reading at the end of that minute. A condition can be added, when that condition is triggered all data is forwarded at full rate of the incoming data until a further condition is triggered that causes the reduced rate to be resumed.

FogLAMP Architecture

The following diagram shows the architecture of FogLAMP:

	Components in blue are plugins. Plugins are light-weight modules that enable FogLAMP to be extended. There are a variety of types of plugins: south-facing, north-facing, storage engine, filters, event rules and event delivery mechanisms. Plugins can be written in python (for fast development) or C++ (for high performance).

	Components in green are microservices. They can co-exist in the same operating environment or they can be distributed across multiple environments.

[image: foglamp_architecture]

FogLAMP Core

The Core microservice coordinates all of the FogLAMP operations. Only one Core service can be active at any time.

Core functionality includes:

Scheduler: Flexible scheduler to bring up processes.

Configuration Management: maintain configuration of all FogLAMP components. Enable software updates across all FogLAMP components.

Monitoring: monitor all FogLAMP components, and if a problem is discovered (such as an unresponsive microservice), attempt to self-heal.

REST API: expose external management and data APIs for functionality across all components.

Backup: FogLAMP system backup and restore functionality.

Audit Logging: maintain logs of system changes for auditing purposes.

Certificate Storage: maintain security certificates for different components, including south services, north services, and API security.

User Management: maintain authentication and permission info on FogLAMP administrators.

Asset Browsing: enable querying of stored asset data.

Storage Layer

The Storage microservice provides two principal functions: a) maintenance of FogLAMP configuration and run-time state, and b) storage/buffering of asset data. The type of storage engine is pluggable, so in installations with a small footprint, a plugin for SQLite may be chosen, or in installations with a high number of concurrent requests and larger footprint Postgresql may be suitable. In micro installations, for example on Edge devices, in-memory temporary storage may be the best option.

Southbound Microservices

Southbound microservices offer bi-directional communication of data and metadata between Edge devices, such as sensors, actuators or PLCs and FogLAMP. Smaller systems may have this service installed onboard Edge devices. Southbound components are typically deployed as always-running services, which continuously wait for new data. Alternatively, they can be deployed as single-shot tasks, which periodically spin up, collect data and spin down.

Northbound Microservices

Northbound microservices offer bi-directional communication of data and metadata between the FogLAMP platform and larger systems located locally or in the cloud. Larger systems may be private and public Cloud data services, proprietary solutions or FogLAMP instances with larger footprints. Northbound components are typically deployed as one-shot tasks, which periodically spin up and send data which has been batched, then spin down. However, they can also be deployed as continually-running services.

Filters

Filters are plugins which modify streams of data that flow through FogLAMP. They can be deployed at ingress (in a South service), or at egress (in a North service). Typically, ingress filters are used to transform or enrich data, and egress filters are used to reduce flow to northbound pipes and infrastructure, i.e. by compressing or reducing data that flows out. Multiple filters can be applied in “pipelines”, and once configured, pipelines can be applied to multiple south or north services.

A sample of existing Filters:

Expression: apply an arbitrary mathematical equation across one or more assets.

Python35: run user-specified python code across one or more assets.

Metadata: apply tags to data, to note the device/location it came from, or to attribute data to a manufactured part.

RMS/Peak: summarize vibration data by generating a Root Mean Squared (RMS) across n samples.

FFT: generate a Fast Fourier Transform (FFT) of vibration data to discover component waveforms.

Delta: Only send data that has changed by a specified amount.

Rate: buffer data but don’t send it, then if an error condition occurs, send the previous data.

Event Engine

The event engine maintains zero or more rule/action pairs. Each rule subscribes to desired asset data, and evaluates it. If the rule triggers, its associated action is executed.

Data Subscriptions: Rules can evaluate every data point for a specified asset, or they can evaluate the minimum, maximum or average of a specified window of data points.

Rules: the most basic rule evaluates if values are over/under a specified threshold. The Expression plugin will evaluate an arbitrary math equation across one or more assets. The Python35 plugin will execute user-specified python code to one or more assets.

Actions: A variety of delivery mechanisms exist to execute a python application, or create arbitrary data, or email/slack/hangout/communicate a message.

REST API

The FogLAMP API provides methods to administer FogLAMP, and to interact with the data inside it.

Graphical User Interface

A GUI enables administration of FogLAMP. All GUI capability is through the REST API, so FogLAMP can also be administered through scripts or other management tools. The GUI contains pages to:

Health: See if services are responsive. See data that’s flowed in and out of FogLAMP

Assets & Readings: analytics of data in FogLAMP

South: manage south services

North: manage north services

Notifications: manage event engine rules and delivery mechanisms

Configuration Management: manage configuration of all components

Schedules: flexible scheduler management for processes and tasks

Certificate Store: manage certificates

Backup & Restore: backup/restore FogLAMP

Logs: see system, notification, audit, packages and tasks logging information

Support: support bundle contents with system diagnostic reports

Settings: set/reset connection and GUI related settings

FogLAMP Plugins

The following set of plugins are available for FogLAMP. These plugins
extend the functionality by adding new sources of data, new destinations,
processing filters that can enhance or modify the data, rules for
notification delivery and notification delivery mechanisms.

South Plugins

South plugins add new ways to get data into FogLAMP, a number of south
plugins are available ready built or users may add new south plugins of
their own by writing them in Python or C/C++.

FogLAMP South Plugins

	Name

	Description

	abb

	A south plugin to pull data from the ABB cloud

	am2315

	FogLAMP south plugin for an AM2315 temperature and humidity sensor

	b100-modbus-python

	A south plugin to read data from a Dynamic Ratings B100 device over Modbus

	beckhoff

	A Beckhoff ADS data ingress plugin for FogLAMP, this monitors Beckhoff PLCs and returns the state of internal variables within the PLC

	benchmark

	A FogLAMP benchmark plugin to measure the ingestion rates on particular hardware

	cc2650

	A FogLAMP south plugin for the Texas Instruments SensorTag CC2650

	coap

	A south plugin for FogLAMP that pulls data from a COAP sensor

	coral-enviro

	A south plugin for the Google Coral Environmental Sensor Board

	csv

	A FogLAMP south plugin in C++ for reading CSV files

	csv-async

	A FogLAMP asynchronous plugin for reading CSV data

	csvplayback

	Plays a CSV at some configurable speed and each column of the file will become a datapoint of an asset using pandas library.

	dht

	A FogLAMP south plugin in C++ that interfaces to a DHT-11 temperature and humidity sensor

	dht11

	A FogLAMP south plugin that interfaces a DHT-11 temperature sensor

	digiducer

	South plugin for the Digiducer 333D01 vibration sensor

	dnp3

	A south plugin for FogLAMP that implements the DNP3 protocol

	dt9837

	A south plugin for the Data Translation DT9837 Series DAQ

	edgeml

	ML south plugin which forwards the video frames to a model running inside micro k8’s; parses the response, generates readings and shows the detection results on browser.

	envirophat

	A FogLAMP south service for the Raspberry Pi EnviroPhat sensors

	expression

	A FogLAMP south plugin that uses a user define expression to generate data

	FlirAX8

	A FogLAMP hybrid south plugin that uses foglamp-south-modbus-c to get temperature data from a Flir Thermal camera

	game

	The south plugin used for the FogLAMP lab session game involving remote controlled cars

	gw65

	FogLAMP plugin for getting vibration data from a set of FLIR GW65 vibration sensors

	http

	A Python south plugin for FogLAMP used to connect one FogLAMP instance to another

	iec104

	A south plugin to gather data using the IEC 104 protocol.

	iec61850

	A south plugin for collecting data via the IEC 61850 protocol

	ina219

	A FogLAMP south plugin for the INA219 voltage and current sensor

	J1708

	A plugin that uses the SAE J1708 protocol to load data from the ECU of heavy duty vehicles.

	J1939

	A CANBUS J1839 plugin to collect data into FogLAMP.

	lathesim

	A simulation plugin used as a demonstration to show how data can be collected within FogLAMP. This plugin simulates various properties of a lathe.

	modbus-c

	A FogLAMP south plugin that implements modbus-tcp and modbus-rtu

	modbustcp

	A FogLAMP south plugin that implements modbus-tcp in Python

	mqtt

	FogLAMP South MQTT Subscriber Plugin

	mqtt-sparkplug

	A FogLAMP south plugin that implements the Sparkplug API over MQTT

	mqtt-scripted

	An MQTT south plugin that allows a Python script to be added to decode the MQTT payload

	opcua

	A FogLAMP south service that pulls data from an OPC-UA server

	openweathermap

	A FogLAMP south plugin to pull weather data from OpenWeatherMap

	person-detection

	FogLAMP south service plugin that detects person in the live video stream

	phidget

	FogLAMP south code for different phidgets

	piwebapi

	A South plugin to ingest data from a PI Server using the PI Web API.

	playback

	A FogLAMP south plugin to replay data stored in a CSV file

	pt100

	A FogLAMP south plugin for the PT100 temperature sensor

	random

	A south plugin for FogLAMP that generates random numbers

	randomwalk

	A FogLAMP south plugin that returns data that with randomly generated steps

	roxtec

	A FogLAMP south plugin for the Roxtec cable gland project

	s2opcua

	An OPCUA south plugin based on the Safe & Secure OPCUA library. This plugin offers similar functionality to the foglamp-south-opcua plugin but also offers encryption and authentication.

	s7

	A south plugin that uses the S7 Communications protocol to read data from a Siemens S7 series PLC.

	sarcos

	A south plugin to process the Sarcos XO data files

	sensehat

	A FogLAMP south plugin for the Raspberry Pi Sensehat sensors

	sensorphone

	A FogLAMP south plugin the task to the iPhone SensorPhone app

	simple-rest

	A generic REST south plugin with support for a variety of common rest payloads and Python scripting to manipulate call results.

	sinusoid

	A FogLAMP south plugin that produces a simulated sine wave

	suez

	A south plugin to extract data from the Suez Water Insight API

	systeminfo

	A FogLAMP south plugin that gathers information about the system it is running on.

	usb4704

	A FogLAMP south plugin the Advantech USB-4704 data acquisition module

	webcam-media

	A FogLAMP south plugin that forwards image data, either directly from a webcam or from a directory of images

	wind-turbine

	A FogLAMP south plugin for a number of sensor connected to a wind turbine demo

North Plugins

North plugins add new destinations to which data may be sent by FogLAMP. A
number of north plugins are available ready built or users may add new
north plugins of their own by writing them in Python or C/C++.

FogLAMP North Plugins

	Name

	Description

	azure

	A north plugin that sends data to Microsoft Azure IoT Core.

	gcp

	A north plugin to send data to Google Cloud Platform IoT Core

	graphite

	A north plugin for FogLAMP that sends data to the Graphite Carbon storage system.

	harperdb

	A north plugin that sends data to the HarperDB SQL/NoSQL data management platform

	http

	A Python implementation of a north plugin to send data between FogLAMP instances using HTTP

	http-c

	A FogLAMP north plugin that sends data between FogLAMP instances using HTTP/HTTPS

	iec104

	A FogLAMP north plugin for sending data using the IEC-104 protocol.

	influxdb

	A north plugin for sending data to InfluxDB

	influxdbcloud

	A north plugin to send data from FogLAMP to the InfuxDBCloud

	kafka

	A FogLAMP plugin for sending data north to Apache Kafka

	kafka-python

	A Python implementation of a north plugin that can send data to Apache Kafka

	opcua

	A north plugin for FogLAMP that makes it act as an OPC-UA server for the data it reads from sensors

	splunk

	A north plugin for sending data to Splunk

	thingspeak

	A FogLAMP north plugin to send data to Matlab’s ThingSpeak cloud

	timestream

	A timestream north plugin

Filter Plugins

Filter plugins add new ways in which data may be modified, enhanced
or cleaned as part of the ingress via a south service or egress to a
destination system. A number of north plugins are available ready built
or users may add new north plugins of their own by writing them in Python
or C/C++.

It is also possible, using particular filters, to supply expressions
or script snippets that can operate on the data as well. This provides a
simple way to process the data in FogLAMP as it is read from devices or
written to destination systems.

FogLAMP Filter Plugins

	Name

	Description

	ADM-LD-prediction

	Filter to detect whether a large discharge is required for an ADM centrifuge

	asset

	A FogLAMP processing filter that is used to block or allow certain assets to pass onwards in the data stream

	asset-split

	A filter to split an asset with multiple data points into several assets, each with a single data point.

	blocktest

	A filter designed to aid testing. It combines incoming readings into bigger blocks before sending onwards

	change

	A FogLAMP processing filter plugin that only forwards data that changes by more than a configurable amount

	csv-writer

	FogLAMP filter which writes selected readings passing through it out as a rotating sequence of .csv files.

	dataframe

	Turn streams of data assets into file data holding individual frames (probably in tmpfs).

	delta

	A FogLAMP processing filter plugin that removes duplicates from the stream of data and only forwards new values that differ from previous values by more than a given tolerance

	downsample

	A data downsampling filter which may be used to reduce the data rate using sampling or averaging techniques.

	edgeml

	Filter which takes image data, calls out to ML process, and forwards the inference from ML as asset contents.

	ema

	Generate exponential moving average datapoint: include a rate of current value and a rate of history values

	eventrate

	A filter designed for use in the north to trigger sending rates based on event notification assets

	expression

	A FogLAMP processing filter plugin that applies a user define formula to the data as it passes through the filter

	fft

	A FogLAMP processing filter plugin that calculates a Fast Fourier Transform across sensor data

	fft2

	Filter for FFT signal processing, finding peak frequencies, etc.

	Flir-Validity

	A FogLAMP processing filter used for processing temperature data from a Flir thermal camera

	log

	A FogLAMP filter that converts the readings data to a logarithmic scale. This is the example filter used in the plugin developers guide.

	metadata

	A FogLAMP processing filter plugin that adds metadata to the readings in the data stream

	omfhint

	A filter plugin that allows data to be added to assets that will provide extra information to the OMF north plugin.

	python27

	A FogLAMP processing filter that allows Python 2 code to be run on each sensor value.

	python35

	A FogLAMP processing filter that allows Python 3 code to be run on each sensor value.

	rate

	A FogLAMP processing filter plugin that sends reduced rate data until an expression triggers sending full rate data

	rename

	A FogLAMP processing filter that is used to modify the name of an asset, datapoint or with both

	replace

	Filter to replace characters in the names of assets and data points in readings object.

	rms

	A FogLAMP processing filter plugin that calculates RMS value for sensor data

	rms-trigger

	An RMS filter that uses a trigger asset rather than a fixed set of readings for each calculation

	scale

	A FogLAMP processing filter plugin that applies an offset and scale factor to the data

	scale-set

	A FogLAMP processing filter plugin that applies a set of sale factors to the data

	sigfns

	Signal processing functions

	sigmacleanse

	A data cleansing plugin that removes data that differs from the mean value by more than x sigma

	simple-python

	The simple Python filter plugin is analogous to the expression filter but accept Python code rather than the expression syntax

	specgram

	FogLAMP filter to generate spectrogram images for vibration data

	statistics

	Generic statistics filter for FogLAMP data that supports the generation of mean, mode, median, minimum, maximum, standard deviation and variance.

	threshold

	A FogLAMP processing filter that only forwards data when a threshold is crossed

	velocity

	Filter to process acceleration data to generate velocity and acceleration envelope

	vibration_features

	A filter plugin that takes a stream of vibration data and generates a set of features that characterise that data

Notification Rule Plugins

Notification rule plugins provide the logic that is used by the
notification service to determine if a condition has been met that should
trigger or clear that condition and hence send a notification. A number of
notification plugins are available as standard, however as with any plugin the
user is able to write new plugins in Python or C/C++ to extend the set of
notification rules.

FogLAMP Notification Rule Plugins

	Name

	Description

	average

	A FogLAMP notification rule plugin that evaluates an expression based sensor data notification rule plugin that triggers when sensors values depart from the moving average by more than a configured limit.

	ML-bad-bearing

	Notification rule plugin to detect bad bearing

	outofbound

	A FogLAMP notification rule plugin that triggers when sensors values exceed limits set in the configuration of the plugin.

	periodic

	A rule that periodically fires based on a timer when data is observed.

	simple-expression

	A FogLAMP notification rule plugin that evaluates an expression based sensor data

	simple-sigma

	A FogLAMP notification rule that will send a notification if the values being monitored differ from the mean for the value by more than a multiple of the current standard deviation.

Notification Delivery Plugins

Notification delivery plugins provide the mechanisms to deliver the
notification messages to the systems that will receive them. A number
of notification delivery plugins are available as standard, however as
with any plugin the user is able to write new plugins in Python or C/C++
to extend the set of notification rules.

FogLAMP Notification Delivery Plugins

	Name

	Description

	alexa-notifyme

	A FogLAMP notification delivery plugin that sends notifications to the Amazon Alexa platform

	asset

	A FogLAMP notification delivery plugin that creates an asset in FogLAMP when a notification occurs

	blynk

	A FogLAMP notification delivery plugin that sends notifications to the Blynk service

	config

	A notification delivery plugin that allows a configuration item within the local FogLAMP instance to be changed when the notification triggers or is cleared.

	email

	A FogLAMP notification delivery plugin that sends notifications via email

	google-hangouts

	A FogLAMP notification delivery plugin that sends alerts on the Google hangout platform

	ifttt

	A FogLAMP notification delivery plugin that triggers an action of IFTTT

	jira

	A notification plugin that creates tickets in Jira

	jsonconfig

	A delivery mechanism that updates one element within a JSON configuration type configuration category item.

	management

	A notification delivery plugin the triggers the FogLAMP management service to check for updates to the configuration of FogLAMP

	mqtt

	A notification delivery plugin that sends messages via MQTT when a notification is triggered or cleared. This is the example used in the notification delivery plugin writers guide.

	north

	Deliver notification data via a FogLAMP north task

	operation

	A notification delivery plugin that will cause an operation to be trigger via the set point control operation API of a south service.

	python35

	A FogLAMP notification delivery plugin that runs an arbitrary Python 3 script

	setpoint

	A foglamp notification plugin that invokes a set point operation on a south service.

	slack

	A FogLAMP notification delivery plugin that sends notifications via the slack instant messaging platform

	telegram

	A FogLAMP notification delivery plugin that sends notifications via the telegram service

	zendesk

	A notification delivery plugin that will create tickets within Zendesk ticketing application

Securing FogLAMP

The default installation of a FogLAMP service comes with security features turned off, there are several things that can be done to add security to FogLAMP. The REST API by default support unencrypted HTTP requests, it can be switched to require HTTPS to be used. The REST API and the GUI can be protected by requiring authentication to prevent users being able to change the configuration of the FogLAMP system. Authentication can be via username and password or by means of an authentication certificate.

Enabling HTTPS Encryption

FogLAMP can support both HTTP and HTTPS as the transport for the REST API used for management, to switch between there two transport protocols select the Configuration option from the left-hand menu and the select Admin API from the configuration tree that appears,

	[image: admin_api]

The first option you will see is a tick box labeled Enable HTTP, to select HTTPS as the protocol to use this tick box should be deselected.

	[image: enable_https]

When this is unticked two options become active on the page, HTTPS Port and Certificate Name. The HTTPS Port is the port that FogLAMP will listen on for HTTPS requests, the default for this is port 1995.

The Certificate Name is the name of the certificate that will be used for encryption. The default s to use a self signed certificate called foglamp that is created as part of the installation process. This certificate is unique per foglamp installation but is not signed by a certificate authority. If you require the extra security of using a signed certificate you may use the FogLAMP Certificate Store functionality to upload a certificate that has been created and signed by a certificate authority.

After enabling HTTPS and selecting save you must restart FogLAMP in order for the change to take effect. You must also update the connection setting in the GUI to use the HTTPS transport and the correct port.

Note: if using the default self-signed certificate you might need to authorise the browser to connect to IP:PORT.
Just open a new browser tab and type the URL https://YOUR_FOGLAMP_IP:1995

Then follow browser instruction in order to allow the connection and close the tab.
In the FogLAMP GUI you should see the green icon (FogLAMP is running).

	[image: connection_https]

Requiring User Login

In order to set the REST API and GUI to force users to login before accessing FogLAMP select the Configuration option from the left-hand menu and then select Admin API from the configuration tree that appears.

	[image: admin_api]

Two particular items are of interest in this configuration category that is then displayed; Authentication and Authentication method

	[image: auth_options]

Select the Authentication field to be mandatory and the Authentication method to be password. Click on Save at the bottom of the dialog.

In order for the changes to take effect FogLAMP must be restarted, this can be done in the GUI by selecting the restart item in the top status bar of FogLAMP. Confirm the restart of FogLAMP and wait for it to be restarted.

Once restarted refresh your browser page. You should be presented with a login request.

	[image: login]

The default username is “admin” with a password of “foglamp”. Use these to login to FogLAMP, you should be presented with a slightly changed dashboard view.

	[image: login_dashboard]

The status bar now contains the name of the user that is currently logged in and a new option has appeared in the left-hand menu, User Management.

Changing Your Password

The top status bar of the FogLAMP GUI now contains the user name on the right-hand side and a pull down arrow, selecting this arrow gives a number of options including one labeled Profile.

	[image: user_pulldown]

Note

This pulldown menu is also where the Shutdown and Restart options have moved.

Selecting the Profile option will display the profile for the user.

	[image: profile]

Towards the bottom of this profile display the change password option appears. Click on this text and a new password dialog will appear.

	[image: password]

This popup can be used to change your password. On successfully changing your password you will be logged out of the user interface and will be required to log back in using this new password.

Password Rotation Mechanism

FogLAMP provides a mechanism to limit the age of passwords in use within the system. A value for the maximum allowed age of a password is defined in the configuration page of the user interface.

	[image: password_rotation]

Whenever a user logs into FogLAMP the age of their password is checked against the maximum allowed password age. If their password has reached that age then the user is not logged in, but is instead forced to enter a new password. They must then login with that new password. In addition the system maintains a history of the last three passwords the user has used and prevents them being reused.

User Management

Once mandatory authentication has been enabled and the currently logged in user has the role admin, a new option appears in the GUI, User Management.

	[image: user_management]

The user management pages allows

	Adding new users.

	Deleting users.

	Resetting user passwords.

	Changing the role of a user.

FogLAMP currently supports two roles for users,

	admin: a user with admin role is able to fully configure FogLAMP and also manage FogLAMP users

	user: a user with this role is able to configure FogLAMP but can not manage users

Adding Users

To add a new user from the User Management page select the Add User icon in the top right of the User Management pane. a new dialog will appear that will allow you to enter details of that user.

	[image: add_user]

You can select a role for the new user, a user name and an initial password for the user. Only users with the role admin can add new users.

Changing User Roles

The role that a particular user has when the login can be changed from the User Management page. Simply select on the change role link next to the user you wish to change the role of.

	[image: change_role]

Select the new role for the user from the drop down list and click on update. The new role will take effect the next time the user logs in.

Reset User Password

Users with the admin role may reset the password of other users. In the User Management page select the reset password link to the right of the user name of the user you wish to reset the password of. A new dialog will appear prompting for a new password to be created for the user.

	[image: reset_password]

Enter the new password and confirm that password by entering it a second time and click on Update.

Delete A User

Users may be deleted from the User Management page. Select the delete link to the right of the user you wish to delete. A confirmation dialog will appear. Select Delete and the user will be deleted.

	[image: delete_user]

You can not delete the last user with role admin as this will prevent you from being able to manage FogLAMP.

Certificate Store

The FogLAMP Certificate Store allows certificates to be stored that may be referenced by various components within the system, in particular these certificates are used for the encryption of the REST API traffic and authentication. They may also be used by particular plugins that require a certificate of one type or another. A number of different certificate types re supported by the certificate store;

	PEM files as created by most certificate authorities

	CRT files as used by GlobalSign, VeriSign and Thawte

	Binary CER X.509 certificates

	JSON certificates as used by Google Cloud Platform

The Certificate Store functionality is available in the left-hand menu by selecting Certificate Store. When selected it will show the current content of the store.

	[image: certificate_store]

Certificates may be removed by selecting the delete option next to the certificate name, note that the keys and certificates can be deleted independently.
The self signed certificate that is created at installation time can not be deleted.

To add a new certificate select the Import icon in the top right of the certificate store display.

	[image: update_certificate]

A dialog will appear that allows a key file and/or a certificate file to be selected and uploaded to the Certificate Store. An option allows to allow overwrite of an existing certificate. By default certificates may not be overwritten.

Buffering & Storage

One of the micro-services that makes up the core of a FogLAMP
implementation is the storage micro-service. This is responsible for

	storing the configuration of FogLAMP

	buffering the data read from the south

	maintaining the FogLAMP audit log

	persisting the state of the system

The storage service is configurable, like other services within FogLAMP
and uses plugins to extend the functionality of the storage system. These
storage plugins provide the underlying mechanism by which data is
stored within FogLAMP. FogLAMP can make use of either one or two of these
plugins at any one time. If a single plugin is used then this plugin
provides the storage for all data. If two plugins are used, one will
be for the buffering of readings and the other for the storage of the
configuration.

As standard FogLAMP comes with 3 storage plugins

	SQLite: A plugin that can store both configuration data and the readings data using SQLite files as the backing store. The plugin uses multiple SQLite database to store different assets, allowing for high bandwidth data at the expense of limiting the number of assets that a single instance can ingest.,

	SQLiteLB: A plugin that can store both configuration data and the readings data using SQLite files as the backing store. This version of the SQLite plugin uses a single readings database and is better suited for environments that do not have very high bandwidth data. It does not limit the number of distinct assets that can be ingested.

	PostgreSQL: A plugin that can store both configuration and readings data which uses the PostgreSQL SQL server as a storage medium.

	SQLiteMemory: A plugin that can only be used to store reading data. It uses SQLite’s in memory storage engine to store the reading data. This provides a high performance reading store however capacity is limited by available memory and if FogLAMP is stopped or there is a power failure the buffered data will be lost.

The default configuration uses the SQLite disk based storage engine for
both configuration and reading data

Configuring The Storage Plugin

Once installed the storage plugin can be reconfigured in much the same
way as any FogLAMP configuration, either using the API or the graphical
user interface to set the storage engine and its options.

	Using the user interface to configuration the storage, select the Configuration item in the left hand menu bar.

	[image: storage_01]

	In the category pull down menu select Advanced.

	[image: storage_02]

	To change the storage plugin to use for both configuration and readings enter the name of the new plugin in the Storage Plugin entry field. If Readings Plugin is left empty then the storage plugin will also be used to store reading data. The default set of plugins installed with FogLAMP that can be used as Storage Plugin values are:

	sqlite - the SQLite file based storage engine.

	postgres - the PostgreSQL server. Note the Postgres server is not installed by default when FogLAMP is installed and must be installed before it can be used.

	The Readings Plugin may be set to any of the above and may also be set to use the SQLite In Memory plugin by entering the value sqlitememory into the configuration field.

	The Database threads field allows for the number of threads used for database housekeeping to be controlled. In normal circumstances 1 is sufficient. If performance issues are seen this can be increased however it is rarely required to be greater than 1 and can have counter productive effects on heavily loaded systems.

	The Manage Storage option is only used when the database storage uses an external database server, such as PostgreSQL. Toggling this option on causes FogLAMP to start as stop the database server when FogLAMP is started and stopped. If it s left off then FogLAMP will assume the database server is running when it starts.

	The Management Port and Service Port options allow fixed ports to be assigned to the storage service. These settings are for debugging purposes only and the values should be set to 0 in normal operation.

Note: Additional storage engines may be installed to extend the set
that is delivered with the standard FogLAMP installation. These will be
documented in the packages that provide the storage plugin.

Storage plugin configurations are not dynamic and FogLAMP must be
restarted after changing these values. Changing the plugin used to store
readings will not cause the data in the previous storage system to be
migrated to the new storage system and this data may be lost if it has
not been sent onward from FogLAMP.

SQLite Plugin Configuration

The SQLite plugin has a more complex set of configuration options that can be used to configure how and when it creates more database to accommodate ore distinct assets. This plugin is designed to allow greater ingest rates for readings by separating the readings for each asset into a database table for that asset. It does however result in limiting the number of distinct assets that can be handled due to the requirement to handle large number of database files.

	[image: sqlite_01]

	Purge Exclusions: This option allows the user to specify that the purge process should not be applied to particular assets. The user can give a comma separated list of asset names that should be excluded from the purge process. Note, it is recommended that this option is only used for extremely low bandwidth, lookup data that would otherwise be completely purged from the system when the purge process runs.

	Pool Size: The number of connections to create in the database connection pool.

	No. Readings per database: This option control how many assets can be stored in a single database. Each asset will be stored in a distinct table within the database. Once all tables within a database are allocated the plugin will use more databases to store further assets.

	No. databases allocate in advance: This option defines how many databases are create initially by the SQLite plugin.

	Database allocation threshold: The number of unused databases that must exist within the system. Once the number of available databases falls below this value the system will begin the process of creating extra databases.

	Database allocation size: The number of databases to create when the above threshold is crossed. Database creation is a slow process and hence the tuning of these parameters can impact performance when an instance receives a large number of new asset names for which it has previously not allocated readings tables.

Installing A PostgreSQL server

The precise commands needed to install a PostgreSQL server vary for system
to system, in general a packaged version of PostgreSQL is best used and
these are often available within the standard package repositories for
your system.

Ubuntu Install

On Ubuntu or other apt based distributions the command to install postgres:

sudo apt install -y postgresql postgresql-client

Now, make sure that PostgreSQL is installed and running correctly:

sudo systemctl status postgresql

Before you proceed, you must create a PostgreSQL user that matches your Linux user. Supposing that user is <foglamp_user>, type:

sudo -u postgres createuser -d <foglamp_user>

The -d argument is important because the user will need to create the FogLAMP database.

A more generic command is:

sudo -u postgres createuser -d $(whoami)

CentOS/Red Hat Install

On CentOS and Red Hat systems, and other RPM based distributions the command is

sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm
sudo yum install -y postgresql96-server
sudo yum install -y postgresql96-devel
sudo yum install -y rh-postgresql96
sudo yum install -y rh-postgresql96-postgresql-devel
sudo /usr/pgsql-9.6/bin/postgresql96-setup initdb
sudo systemctl enable postgresql-9.6
sudo systemctl start postgresql-9.6

At this point, Postgres has been configured to start at boot and it should be up and running. You can always check the status of the database server with systemctl status postgresql-9.6:

sudo systemctl status postgresql-9.6

Next, you must create a PostgreSQL user that matches your Linux user.

sudo -u postgres createuser -d $(whoami)

Finally, add /usr/pgsql-9.6/bin to your PATH environment variable in $HOME/.bash_profile. the new PATH setting in the file should look something like this:

PATH=$PATH:$HOME/.local/bin:$HOME/bin:/usr/pgsql-9.6/bin

SQLite Plugin Configuration

The SQLite storage engine has further options that may be used to
configure its behavior. To access these configuration parameters click
on the sqlite option under the Storage category in the configuration
page.

	[image: storage_03]

Many of these configuration options control the performance of SQLite and
it is important to have some background on how readings are stored within
SQLite. The storage plugin stores readings for each distinct asset in
a table for that asset. These tables are stored within a database. In
order to improve concurrency multiple databases are used within the
storage plugin. A set of parameters are used to define how these tables
and databases are used.

	Pool Size: The number of connections to maintain to the database server.

	No. Readings per database: This controls the number of different assets that will be stored in each database file within SQLite.

	No. databases to allocate in advance: The number of SQLite databases that will be created at startup.

	Database allocation threshold: The point at which new databases are created. If the number of empty databases falls below this value then an other set of databases will be created.

	Database allocation size: The number of database to allocate each time a new set of databases is required.

The setting of these parameters also imposes an upper limit on the number
of assets that can be stored within a FogLAMP instance as SQLite has a
maximum limit of 61 databases that can be in use at any time. Therefore
the maximum number of readings is 60 times the number of readings per
database. One database is reserved for the configuration data.

Tuning FogLAMP

Many factors will impact the performance of a FogLAMP system

	The CPU, memory and storage performance of the underlying hardware

	The communication channel performance to the sensors

	The communications to the north systems

	The choice of storage system

	The external demands via the public REST API

Many of these are outside of the control of FogLAMP itself, however it is possible to tune the way FogLAMP will use certain resources to achieve better performance within the constraints of a deployment environment.

South Service Advanced Configuration

The south services within FogLAMP each have a set of advanced configuration options defined for them. These are accessed by editing the configuration of the south service itself. There is a link titled Show Advanced Config to the right of the screen between the main configuration parameters and the Enabled option. Clicking on this link will show the following panel of advanced configuration options.

	[image: south_advanced]

	Maximum Reading Latency (mS) - This is the maximum period of time for which a south service will buffer a reading before sending it onward to the storage layer. The value is expressed in milliseconds and it effectively defines the maximum time you can expect to wait before being able to view the data ingested by this south service.

	Maximum buffered Readings - This is the maximum number of readings the south service will buffer before attempting to send those readings onward to the storage service. This and the setting above work together to define the buffering strategy of the south service.

	Reading Rate - The rate at which polling occurs for this south service. This parameter only has effect if your south plugin is polled, asynchronous south services do not use this parameter. The units are defined by the setting of the Reading Rate Per item.

	Throttle - If enabled this allows the reading rate to be throttled by the south service. The service will attempt to poll at the rate defined by Reading Rate, however if this is not possible, because the readings are being forwarded out of the south service at a lower rate, the reading rate will be reduced to prevent the buffering in the south service from becoming overrun.

	Reading Rate Per - This defines the units to be used in the Reading Rate value. It allows the selection of per second, minute or hour.

	Minimum Log Level - This configuration option can be used to set the logs that will be seen for this service. It defines the level of logging that is send to the syslog and may be set to error, warning, info or debug. Logs of the level selected and higher will be sent to the syslog.

Tuning Buffer Usage

The tuning of the south service allows the way the buffering is used within the south service to be controlled. Setting the latency value low results in frequent calls to send data to the storage service and therefore means data is more quickly available. However sending small quantities of data in each call the the storage system does not result in the most optimal use of the communications or of the storage engine itself. Setting a higher latency value results in more data being sent per transaction with the storage system and a more efficient system. The cost of this is the requirement for more in-memory storage within the south service.

Setting the Maximum buffers Readings value allows the user to place a cap on the amount of memory used to buffer within the south service, since when this value is reach, regardless of the age of the data and the setting of the latency parameter, the data will be sent to the storage service. Setting this to a smaller value allows tighter control on the memory footprint at the cost of less efficient use of the communication and storage service.

Tuning between performance, latency and memory usage is always a balancing act, there are situations where the performance requirements mean that a high latency will need to be incurred in order to make the most efficient use of the communications between the micro services and the transnational performance of the storage engine. Likewise the memory resources available for buffering may restrict the performance obtainable.

Notifications Service

FogLAMP supports an optional service, known as the notification service that adds an event engine to the FogLAMP installation. The notification services observed data as it flows into the FogLAMP storage service buffer and processes that data against a set of rules that are configurable by the user to determine if an event has occurred. Events may be either when a condition that was previously not met being is, or a condition that was previously met becoming no longer true. The notification service can then send a notification when an event occurs or, in the case of a condition that is met, it can send notifications as long as that condition is met.

The notification services operates on data that is in the storage layer, and is independent of the individual south services. This means that the notification rules can use data from several south services to evaluate if a condition has occurred. Also the data that is observed by the notification is after any filtering rules have been applied in the south services but before any filtering that occurs in the north tasks. The mechanism used to allow the notification service to observe data is that the notifications register with the storage service to be given the values for particular assets as they arrive at the storage service. A notification may register for several assets and is free to buffer that data internally within the notification service. This registration does not impact how the data that is requested is treated in the rest of the system; it will still for example follow the normal processing rules to be sent onward to the north systems.

Notifications

The notification services manages Notifications, these are a set of parameters that it uses to determine if an event has occurred and a notification delivery should be made on the basis of that event.

A notification within the notification service consists of;

	A notification rule plugin that contains the logic to evaluate if a rule has been triggered, thus creating an event.

	A set of assets that are required to execute a notification rule.

	Information that defines how the data for each asset should be delivered to the notification rule.

	Configuration for the rule plugin that customizes that logic to this notification instance.

	A delivery plugin that provides the mechanism to delivery an event to destination for the notification.

	Configuration that may be required for the delivery plugin to operate.

Notification Rules

Notification rules are the logic that is used by the notification to determine if an event has occurred or not. An event is basically based on the values of a number of attributes, either at a single point in time or over a period of time. The notification services is delivered with one built in rule, this is a very simple rule called the threshold rule it simply looks at a single asset to determine if the value of a datapoint within the asset goes above or below a set value.

A notification rule has associated with it a set of configuration options, these define how the plugin behaves but also what data the plugin requires to execute the evaluation logic within the plugin. These configuration parameters can be divided into two sets; those items that define the data the rule requires from the notification service itself and those that relate directly to the logic of the rule.

A rule may work across one or more assets, the assets it requires are configured in the rule configuration and passed the the notification service to enable the service to subscribe to those assets and be sent that data by the storage service. A rule plugin may ask for every value of the asset as it changes or it may ask for a window of data. A window is defined as the values of an asset within a given time frame. An example might be the last 10 minutes of values. In the case of the window the rule may be passed the average value, minimum, maximum or all values in that window. The requirements about how data is delivered to a rule may be hard coded within the logic of a rule or may be part of the configuration a user of the rule should provide.

The second type of configuration parameter a rule might include are those that control the logic itself, in the example of the threshold rule this would be the threshold value itself and the control if the event is considered to have triggered if the value is above or below the threshold.

The section Notification Rule Plugins contains a full list of currently available rule plugins for FogLAMP. As with other plugin types they are designed to be easily written by end users and developers, a guide is available for anyone wishing to write a notification rule plugin of their own.

Notification Types

Notifications can be delivered under a number of different conditions based on the state returned from a notification rule and how it related to the previous state returned by the notification rule, this is known as the notification type. A notification may be one of three types, these types are used to define when and how often notification are delivered.

One shot

A one shot notification is sent once when the notification triggers but will not be resent again if the notification triggers on successive evaluations. Once the evaluation does not trigger, the notification is cleared and will be sent again the next time the notification rule triggers.

One shot notifications may be further tailored with a maximum repeat frequency, e.g. no more than once in any 15 minute period.

Toggle

A toggle notification is sent when the notification rule triggers and will not be resent again until the rule fails to trigger, in exactly the same way as a one shot trigger. However in this case when the notification rule first stops triggering a cleared notification is sent.

Again this may be modified by the addition of a maximum repeat frequency.

Retriggered

A retriggered notification will continue to be sent when a notification rule triggers. The rate at which the notification is sent can be controlled by a maximum repeat frequency, e.g. send a notification every 5 minutes until the condition fails to trigger.

Notification Delivery

The notification service does not natively support any form of notification delivery, it relies upon a notification delivery plugin in order to delivery a notification of an event to a user or external system that should be alerted to the event that has occurred. Typical notification deliveries might be to alert a user via some form of paging or messaging system, push an event to an external application by sending some machine level message, execute an external program or code segment to make an action occur, switching on an indication light or in extreme cases maybe shutting down a machine for which a critical fault has been detected. The section Notification Delivery Plugins contains a full list of currently available notification delivery plugins, however like other plugins these are easily extended and a guide is available for writing notification plugins to extend the available set of plugins.

Installing the Notification Service

The notification service is not part of the base FogLAMP installation and is not a plugin, it is a separate microservice dedicated to the detection of events and the sending of notifications. The service is stored in a separate source repository, foglamp-service-notification and is packaged as a separate binary package for installation.

Building Notification Service

As with FogLAMP itself there is always the option to build the notification service from the source code repository. This is only recommended if you also built your FogLAMP from source code, if you did not then you should first do this before building the notification, otherwise you should install a binary package of the notification service.

The steps involved in building the notification service, assuming you have already built FogLAMP itself and the environment variable FOGLAMP_ROOT points to where you built your FogLAMP, are;

$ git clone https://github.com/foglamp/foglamp-service-notification.git
...
$ cd foglamp-service-notification
$./requirements.sh
...
$ mkdir build
$ cd build
$ cmake ..
...
$ make
...

This will result in the creation of a notification service binary, you now need to copy that binary into the FogLAMP installation. There are two options here, one if you used make install to create your installation and the other if you are running directly form the build environment.

If you used make install to create your FogLAMP installation then simply run make install to install your notification service. This should be run from the build directory under the foglamp-service-notification directory.

$ make install

Note

You may need to run make install under a sudo command if your user does not have permissions to write to the installation directory. If you use a DESTDIR=… option to the make install of FogLAMP then you should use the same DESTDIR=… option here also.

If you are running your FogLAMP directly from the build environment, then execute the command

$ cp ./C/services/notification/foglamp.services.notification $FOGLAMP_ROOT/services

Installing Notification Service Package

If you are using the packaged binaries for you system then you can use the package manager to install the foglamp-service-notification package. The exact command depends on your package manager and how you obtained your packages.

If you downloaded you packages then you should navigate to the directory that contains your package files and run the package manager. If you have deb package files run the command

$ sudo apt -y install ./foglamp-service-notification-1.7.0-armhf.deb

Note

The version number, 1.7.0 may be different on your system, this will depend which version you have downloaded. Also the armhf may be different for your machine architecture. Verify the precise name of your package before running the above command.

If you are using a RedHat or CentOS distribution and have rpm package files then run the command

$ sudo yum -y localinstall ./foglamp-service-notification-1.7.0-x86_64.deb

Note

The version number, 1.7.0 may be different on your system, this will depend which version you have downloaded. Verify the precise name of your package before running the above command.

If you have configured your system to search a package repository that contains the FogLAMP packages then you can simply run the command

$ sudo apt-get -y install foglamp-service-notification

On a Debian/Ubuntu system, or

$ sudo yum -y install foglamp-service-notification

On a RedHat/CentOS system. This will install the latest version of the notification service on your machine.

Starting The Notification Service

Once installed you must configure FogLAMP to start the notification service. This is simply done form the GUI by selecting the Notifications option from the left-hand menu. In the page that is then shown you will see a panel at the top that allows you to add & enable now the notification service. This only appears if one has not already be added.

	[image: add_notification_service]

Select this link to add & enable now the notification service, a new dialog will appear that allows you to name and enable your service.

	[image: enable_notify_service]

Configuring The Notification Service

Once the notification service has been added and enabled a new icon will appear in the Notifications page that allows you to configure the notification service. The icon appears in the top right and is in the shape of a gear wheel. [image: notification_settings_icon]

Clicking on this icon will display the notification service configuration dialog.

	[image: notification_settings]

You can use this dialog to control the level of logging that is done from the service by setting the Minimum Log Level to the least severity log level you wish to see. All log entries at the select level and of greater severity will be logged.

It is also possible to set the number of threads that will be used for delivering notifications. This defines how many notifications can be delivered in parallel. This only needs to be increased if the delivery process of any of the in use delivery plugins are long running.

The final setting allows you to disable the notification service.

Once you have updated the configuration of the service click on Save.

It is also possible to delete the notification service using the Delete Service button at the bottom of this dialog.

Using The Notification Service

Add A Notification

In order to add s notification, select the Notifications page in the left-hand menu, an empty set of notifications will appear.

	[image: empty_notifications]

Click on the + icon to add a new notification.

	[image: notification_1]

You will be presented with a dialog to enter a name and description for your notification.

	[image: notification_2]

Enter text for the name you require, a suggested description will be automatically added, however you can modify this to any string you desire. When complete click on the Next button to move forwards in the definition process. You can always click on Previous to go back a screen and modify what has been entered.

	[image: notification_3]

You are presented with the set of installed rules on the system. If the rule you wish to use is not installed and you wish to install it then use the link available plugins to be presented with the list of plugins that are available to be installed.

Note

The available plugins link will only work if you have added the FogLAMP package repository to the package manager of your system.

When you select a rule plugin a short description of what the rules does will be displayed to the right of the list. In this example we will use the threshold rule that is built into the notification service. Click on Next once you have selected the rule you wish to use.

	[image: notification_4]

You will be presented with the configuration parameters applicable to the rule you have chosen. Enter the name of the asset and the datapoint within that asset that you wish the rule to operate on. In the case of the threshold rule you can also define if you want the rule to trigger if the value is greater than, greater than or equal, less than or less than or equal to a Trigger value.

You can also choose to look at Single Item or Window data. If you choose the later you can then choose to define if the minimum, maximum or average within the window that must cross the threshold value.

	[image: notification_5]

Once you have set the parameters for the rule click on the Next button to select the delivery plugin to use to delivery the notification data.

	[image: notification_6]

A list of available delivery plugins will be presented, along with a similar link that allows you to install new delivery plugins if desired. As you select a plugin a short text description will be displayed to the right of the plugin list. In this example we will select the Slack messaging platform for the delivery of the notification.

Once you have selected the plugin you wish to use click on the Next button.

	[image: notification_7]

You will then be presented with the configuration parameters the delivery plugin requires to deliver the notification. In the case of the Slack plugin this consists of the webhook that you should obtain from the Slack application and a message text that will be sent when the event triggers.

Note

You may disable the delivery of a notification separately to enabling or disabling the notification. This allows you to test the logic of a notification without delivering the notification. Entries will still be made in the notification log when delivery is disabled.

Once you have completed the configuration of the delivery plugin click on Next to move to the final stage in setting up your notification.

	[image: notification_8]

The final stage of setting up your configuration is to set the notification type and the retrigger time for the notification. Enable the notification and click on Done to complete setting up your notification.

After a period of time, when a sinusoid value greater than 0.5 is received, a message will appear in your Slack window.

	[image: slack]

This will repeat at a maximum rate defined by the Retrigger Time whenever a value of greater than 0,5 is received.

Notification Log

You can see activity related to the notification service by selecting the Notifications option under Logs in the left-hand menu.

	[image: notification_log]

You may filter this output using the drop down menus along the top of the page. The list to the left defines the type of event that you filter, clicking on this list will show you the meaning of the different audit types.

	[image: notification_log_type]

Editing Notifications

It is possible to update existing notifications or remove them using the Notifications option from the left-hand menu. Clicking on Notifications will bring up a list of the currently defined notifications within the system.

	[image: notification_list]

Click on the name of the notification of interest to display the details of that notification and allow it to be edited.

	[image: notification_edit]

A single page dialog appears that allows you to change any of the parameters of you notification.

Note

You can not change the rule plugin or delivery plugin you are using. If you wish to change either of these then you must delete this notification and create a new one with the desired plugins.

Once you have updated your notification click Save to action the changes.

If you wish to delete your notification this may be done by clicking the Delete button at the base of the dialog.

Set Point Control

FogLAMP supports facilities that allows control of devices via the south service and plugins. This control in known as set point control as it is not intended for real time critical control of devices but rather to modify the behavior of a device based on one of many different information flows. The latency involved in these control operations is highly dependent on the control path itself and also the scheduling limitations of the underlying operating system. Hence the caveat that the control functions are not real time or guaranteed to be actioned within a specified time window.

Control Functions

The are two type of control function supported

	Modify the value in a device via the south service and plugin.

	Request the device to perform an action.

Set Point

Setting the value within the device is known as a set point action in FogLAMP. This can be as simple as setting a speed variable within a controller for a fan or it may be more complete. Typically a south plugin would provide a set of values that can be manipulated, giving each a symbolic name that would be available for a set point command. The exact nature of these is defined by the south plugin.

Operation

Operations, as the name implies provides a means for the south service to request a device to perform an operation, such as reset or re-calibrate. The names of these operations and any arguments that can be given are defined within the south plugin and are specific to that south plugin.

Control Paths

Set point control may be invoked via a number of paths with FogLAMP

	As the result of a notification within FogLAMP itself.

	As a result of a request via the FogLAMP public REST API.

	As a result of a control message flowing from a north side system into a north plugin and being routed onward to the south service.

Currently only the notification method is fully implemented within FogLAMP.

The use of a notification in the FogLAMP instance itself provides the fastest response for an edge notification. All the processing for this is done on the edge by FogLAMP itself.

Edge Based Control

Edge based control is the name we use for a class of control applications that take place solely within the FogLAMP instance at the edge. The data that is required for the control decision to be made is gathered in the FogLAMP instance, the logic to trigger the control action runs in the FogLAMP instance and the control action is taken within the FogLAMP instance. Typically this will involve one or more south plugins to gather the data required to make the control decision, possibly some filters to process that data, the notification engine to make the decision and one or more south services to deliver the control messages.

As an example of how edge based control might work lets consider the following case.

We have a machine tool that is being monitored by FogLAMP using the OPC/UA south plugin to read data from the machine tools controlling PLC. As part of that data we receive an asset which contains the temperature of the motor which is running the tool. We can assume this asset is called MotorTemperature and it contains a single data point called temperature.

We also have a fan unit that is able to cool that motor which is controlled via a Modbus interface. The modbus contains one a coil that toggles the fan on and off and a register that controls the speed of the fan. We configure the foglamp-south-modbus as a service called MotorFan with a control map that will map the coil and register to a pair of set points.

{
 "values" : [
 {
 "name" : "run",
 "coil" : 1
 },
 {
 "name" : "speed",
 "register" : 1
 }
]
}

	[image: setpoint_1]

If the measured temperature of the motor going above 35 degrees centigrade we want to turn the fan on at 1200 RPM. We create a new notification to do this. The notification uses the threshold rule and triggers if the asset MotorTemperature, data point temperature is greater than 35.

	[image: setpoint_2]

We select the setpoint delivery plugin from the list and configure it.

	[image: setpoint_3]

	In Service we set the name of the service we are going to use to control the fan, in this case MotorFan

	In Trigger Value we set the control message we are going to send to the service. This will turn the fan on and set the speed to 1200RPM

	In Cleared Value we set the control message we are going to send to turn off the fan when the value falls below 35 degrees.

The plugin is enabled and we go on to set the notification type to toggled, since we want to turn off the fan if the motor cools down, and set a retrigger time to prevent the fan switching on and off too quickly. The notification type and the retrigger time are important parameters for tuning the behavior of the control system and are discussed in more detail below.

If we required the fan to speed up at a higher temperature then this could be achieved with a second notification. In this case it would have a higher threshold value and would set the speed to a higher value in the trigger condition and set it back to 1200 in the cleared condition. Since the notification type is toggled the notification service will ensure that these are called in the correct order.

Data Substitution

There is another option that can be considered in our example above that would allow the fan speed to be dependent on the temperature, the use of data substitution in the setpoint notification delivery.

Data substitution allows the values of a data point in the asset that caused the notification rule to trigger to be substituted into the values passed in the set point operation. The data that is available in the substitution is the same data that is given to the notification rule that caused the alert to be triggered. This may be a single asset with all of its data points for simple rules or may be multiple assets for more complex rules. If the notification rule is given averaged data then it is these averages that will be available rather than the individual values.

Parameters are substituted using a simple macro mechanism, the name of an asset and data point with in the asset is inserted into the value surrounded by the $ character. For example to substitute the value of the temperature data point of the MotorTemperature asset into the speed set point parameter we would define the following in the Trigger Value

{
 "values" : {
 "speed" : "$MotorTemperature.temperature$"
}

Note that we separate the asset name from the data point name using a period character.

This would have the effect of setting the fan speed to the temperature of the motor. Whilst allowing us to vary the speed based on temperature it would probably not be what we want as the fan speed is too low. We need a way to map a temperature to a higher speed.

A simple option is to use the macro mechanism to append a couple of 0s to the temperature, a temperature of 21 degrees would result in a fan speed of 2100 RPM.

{
 "values" : {
 "speed" : "$MotorTemperature.temperature$00"
}

This works, but is a little primitive and limiting. Another option is to add data to the asset that triggers the notification. In this case we could add an expression filter to create a new data point with a desired fan speed. If we were to add an expression filter and give it the expression desiredSpeed = temperature > 20 ? temperature * 50 + 1200 : 0 then we would create a new data point in the asset called desiredSpeed. The value of desiredSpeed would be 0 if the temperature was 20 degrees or below, however for temperatures above it would be 1200 plus 50 times the temperature.

This new desired speed can then be used to set the temperature in the setpoint notification plugin.

{
 "values" : {
 "speed" : "$MotorTemperature.desiredSpeed$"
 }
}

The user then has the choice of adding the desired speed item to the data stored in the north, or adding an asset filter in the north to remove this data point form the data that is sent onward to the north.

Tuning edge control systems

The set point control features of FogLAMP are not intended to replace real time control applications such as would be seen in PLCs that are typically implemented in ladder logic, however FogLAMP does allow for high performance control to be implemented within the edge device. The precise latency in control decisions is dependent on a large number of factors and there are various tuning parameters that can be used to reduce the latency in the control path.

In order to understand the latency inherent in the control path we should first start my examining that path to discover where latency can occur. To do this will will choose a simple case of a single south plugin that is gathering data required by a control decision within FogLAMP. The control decision will be taken in a notification rule and delivered via the foglamp-notify-setpoint plugin to another south service.

A total of four services within FogLAMP will be involved in the control path

	[image: edge_control_path]

	the south service that is gathering the data required for the decision

	the storage service that will dispatch the data to the notification service

	the notification service that will run the decision rule and trigger the delivery of the control message

	the south service that will send the control input to the device that is being controlled

Each of these services can add to that latency in the control path, however the way in which these are configured can significantly reduce that latency.

The south service that is gathering the data will typically being either be polling a device or obtaining data asynchronously from the device. This will be sent to the ingest thread of the south service where it will be buffered before sending the data to the storage service.

The advanced settings for the south service can be used to trigger how often that data is sent to the storage service. Since it is the storage service that is responsible for routing the data onward to the notification service this impacts the latency of the delivery of the control messages.

	[image: advanced_south]

The above shows the default configuration of a south service. In this case data will not be sent to the south service until there are either 100 readings buffered in the south service, or the oldest reading in the south service buffer has been in the buffer for 5000 milliseconds. In this example we are reading 1 new readings every second, therefore will send data to the storage service every 5 seconds, when the oldest reading in the buffer has been there for 5000mS. When it sends data it will send all the data it has buffered, in this case 5 readings as one block. If the oldest reading is the one that triggers the notification we have therefore introduced a 5 second latency into the control path.

The control path latency can be reduced by reducing the Maximum Reading Latency of this south plugin. This will of course put greater load on the system as a whole and should be done with caution as it increases the message traffic between the south service and the storage service.

The storage service has little impact on the latency, it is designed such that it will forward data it receives for buffering to the notification service in parallel to buffering it. The storage service will only forward data the notification service has subscribed to receive and will forward that data in the blocks it arrives at the storage service in. If a block of 5 readings arrives at the the storage service then all 5 will be sent to the notification service as a single block.

The next service in the edge control path is the notification service, this is perhaps the most complex step in the journey. The behavior of the notification service is very dependent upon how each individual notification instance has been configured, factors that are important are the notification type, the retrigger interval and the evaluation data options.

The notification type is used to determine when notifications are delivered to the delivery channel, in the case of edge control this might be the setpoint plugin or the operation plugin. FogLAMP implements three options for the notification type

	One shot: A one shot notification is sent once when the notification triggers but will not be resent again if the notification triggers on successive evaluations. Once the evaluation does not trigger, the notification is cleared and will be sent again the next time the notification rule triggers. One shot notifications may be further tailored with a maximum repeat frequency, e.g. no more than once in any 15 minute period.

	Toggle: A toggle notification is sent when the notification rule triggers and will not be resent again until the rule fails to trigger, in exactly the same way as a one shot trigger. However in this case when the notification rule first stops triggering a cleared notification is sent. Again this may be modified by the addition of a maximum repeat frequency.

	Retriggered: A retriggered notification will continue to be sent when a notification rule triggers. The rate at which the notification is sent can be controlled by a maximum repeat frequency, e.g. send a notification every 5 minutes until the condition fails to trigger.

It is very important to choose the right type of notification in order to ensure the data delivered in your set point control path is what you require. The other factor that comes into play is the Retrigger Time, this defines a dead period during which notifications will not be sent regardless of the notification type.

Setting a retrigger time that is too high will mean that data that you expect to be sent will not be sent. For example if you a new value you wish to be updated once every 5 seconds then you should use a retrigger type notification and set the retrigger time to less than 5 seconds.

It is very important to understand however that the retrigger time defines when notifications can be delivered, it does not related to the interval between readings. As an example, assume we have a retrigger time of 1 second and a reading that arrives every 2 seconds that causes a notification to be sent.

	If the south service is left with the default buffering configuration it will send the readings in a block to the storage service every 5 seconds, each block containing 2 readings.

	These are sent to the notification service in a single block of two readings.

	The notification will evaluate the rule against the first reading in the block.

	If the rule triggers the notification service will send the notification via the set point plugin.

	The notification service will now evaluate the rule against the second readings.

	If the rule triggers the notification service will note that it has been less than 1 second since it sent the last notification and it will not deliver another notification.

Therefore, in this case you appear to see only half of the data points you expect being delivered to you set point notification. In order to rectify this you must alter the tuning parameters of the south service to send data more frequently to the storage service.

The final hop in the edge control path is the call from the notification service to the south service and the delivery via the plugin in the south service. This is done using the south service interface and is run on a separate thread in the south service. The result would normally be expected to be very low latency, however it should be noted that plugins commonly protect against simultaneous ingress and egress, therefore if the south service being used to deliver the data to the end device is also reading data from that device, there may be a requirement for the current read to complete before the write operation an commence.

To illustrate how the buffering in the south service might impact the data sent to the set point control service we will use a simple example of sine wave data being created by a south plugin and have every reading sent to a modbus device and then read back from the modbus device. The input data as read at the south service gathering the data is a smooth sine wave,

	[image: sine_in]

The data observed that is written to the modbus device is not however a clean sine wave as readings have been missed due to the retrigger time eliminating data that arrived in the same buffer.

	[image: sine_out5]

Some jitter caused by occasional differences in the readings that arrive in a single block can be seen in the data as well.

Changing the buffering on the south service to only buffer a single reading results in a much smooth sine wave as can be seen below as the data is seen to transition from one buffering policy to the next.

	[image: sine_out_change]

At the left end of the graph the south service is buffering 5 readings before sending data onward, on the right end it is only buffering one reading.

Troubleshooting the PI-Server integration

This section describes how to troubleshoot issues with the PI-Server integration
using FogLAMP version >= 1.9.1 and PI Web API 2019 SP1 1.13.0.6518

	Log files

	How to check the PI Web API is installed and running

	Commands to check the PI Web API

	Error messages and causes

	Possible solutions to common problems

Log files

FogLAMP logs messages at error and warning levels by default, it is possible to increase the verbosity of messages logged to include information and debug messages also. This is done by altering the minimum log level setting for the north service or task. To change the minimal log level within the graphical user interface select the north service or task, click on the advanced settings link and then select a new minimal log level from the option list presented.
The name of the north instance should be used to extract just the logs about the PI-Server integration, as in this example:

screenshot from the FogLAMP GUI

[image: img_003]

$ sudo cat /var/log/syslog | grep North_Readings_to_PI

Sample message:

user.info, 6,1,Mar 15 08:29:57,localhost,FogLAMP, North_Readings_to_PI[15506]: INFO: SendingProcess is starting

Another sample message:

North_Readings_to_PI[20884]: WARNING: Error in retrieving the PIWebAPI version, The PI Web API server is not reachable, verify the network reachability

How to check the PI Web API is installed and running

Open the URL https://piserver_1/piwebapi in the browser, substituting piserver_1 with the name/address of your PI Server, to
verify the reachability and proper installation of PI Web API.
If PI Web API is configured for Basic authentication a prompt, similar to the one shown below, requesting entry of the user name and password will be displayed

[image: img_002]

NOTE:

	Enter the user name and password which you set in your FogLAMP configuration.

The PI Web API OMF plugin must be installed to allow the integration with FogLAMP, in this screenshot the 4th row shows the
proper installation of the plugin:

[image: img_001]

Select the item System to verify the installed version:

[image: img_010]

Commands to check the PI WEB API

Open the PI Web API URL and drill drown into the Data Archive and the Asset Framework hierarchies to verify the proper configuration on the PI-Server side. Also confirm that the correct permissions have be granted to access these hierarchies.

Data Archive drill down

Following the path DataServers -> Points:

[image: img_004]

[image: img_005]

You should be able to browse the PI Points page and see your PI Points if some data was already sent:

[image: img_006]

Asset Framework drill down

Following the path AssetServers -> Select the Instance -> Select the proper Databases -> drill down into the AF hierarchy up to the required level -> Elements:

[image: img_007]

selecting the instance

[image: img_008]

selecting the database

[image: img_009]

Proceed with the drill down operation up to the desired level/asset.

Error messages and causes

Some error messages and causes:

	Message

	Cause

	North_Readings_to_PI[20884]: WARNING: Error in retrieving the PIWebAPI version, The PI Web API server is not reachable, verify the network reachability

	FogLAMP is not able to reach the machine in which PI-Server is running due to a network problem or a firewall restriction.

	North_Readings_to_PI[5838]: WARNING: Error in retrieving the PIWebAPI version, 503 Service Unavailable

	FogLAMP is able to reach the machine in which PI-Server is executing but the PI Web API is not running.

	North_Readings_to_PI[24485]: ERROR: Sending JSON data error : Container not found. 4273005507977094880_1measurement_sin_4816_asset_1 - WIN-4M7ODKB0RH2:443 /piwebapi/omf

	FogLAMP is able to interact with PI Web API but there is an attempt to store data in a PI Point that does not exist.

Possible solutions to common problems

	Recreate a single or a sets of PI-Server objects and resend all the data for them to the PI Server on the Asset Framework hierarchy level

	
	procedure:

	
	disable the 1st north instance

	delete the objects in the PI Server, AF + Data archive, that are to be recreated or were partially sent.

	create a new DISABLED north instance using a new, unique name and having the same AF hierarchy as the 1st north instance

	install foglamp-filter-asset on the new north instance

	configure foglamp-filter-asset with a rule like the following one

{
 "rules": [
 {
 "asset_name": "asset_4",
 "action": "include"
 }
],
 "defaultAction": "exclude"
}

	enable the 2nd north instance

	let the 2nd north instance send the desired amount of data and then disable it

	enable the 1st north instance

	note:

	
	the 2nd north instance will be used only to recreate the objects and resend the data

	the 2nd north instance will resend all the data available for the specified included assets

	there will some data duplicated for the recreated assets because part of the information will be managed by both the north instances

	Recreate all the PI-Server objects and resend all the data to the PI Server on a different Asset Framework hierarchy level

	
	procedure:

	
	disable the 1st north instance

	create a new north instance using a new, unique name and having a new AF hierarchy (North option ‘Asset Framework hierarchies tree’)

	note:

	
	this solution will create a set of new objects unrelated to the previous ones

	all the data stored in FogLAMP will be sent

	Recreate all the PI-Server objects and resend all the data to the PI Server on the same Asset Framework hierarchy level of the 1st North instance WITH data duplication

	
	procedure:

	
	disable the 1st north instance

	delete properly the objects on the PI Server, AF + Data archive, that were eventually partially deleted

	stop / start PI Web API

	create a new north instance 2nd using the same AF hierarchy (North option ‘Asset Framework hierarchies tree)

	note:

	
	all the types will be recreated on the PI-Server. If the structure of each asset, number and types of the properties, does not change the data will be accepted and laced into the PI Server without any error. PI Web API 2019 SP1 1.13.0.6518 will accept the data.

	Using PI Web API 2019 SP1 1.13.0.6518 the PI-Server creates objects with the compression feature disabled. This will cause any data that was previously loaded and is still present in the Data Archive, to be duplicated.

	Recreate all the PI-Server objects and resend all the data to the PI Server on the same Asset Framework hierarchy level of the 1st North instance WITHOUT data duplication

	
	procedure:

	
	disable the 1st north instance

	delete all the objects on the PI Server side, both in the AF and in the Data Archive, sent by the 1st north instance

	stop / start PI Web API

	create a new north instance using the same AF hierarchy (North option ‘Asset Framework hierarchies’ tree)

	note:

	
	all the data stored in FogLAMP will be sent

Plugin Developer Guide

	Plugins
	Plugins in this version of FogLAMP

	Installing New Plugins

	Writing and Using Plugins
	Common FogLAMP Plugin API
	Plugin Information

	Plugin Initialization

	Plugin Shutdown

	Plugin Reconfigure

	South Plugins
	Polled Mode
	Plugin Poll

	Async IO Mode
	Plugin Start

	Async Handler

	A South Plugin Example In Python: the DHT11 Sensor
	The Hardware

	The Software

	The Plugin

	Building FogLAMP and Adding the Plugin

	Using the Plugin

	South Plugins in C
	Polled Mode
	Plugin Poll

	Plugin Poll Returning Multiple Values

	Async IO Mode
	Plugin Register Ingest

	Plugin Start

	Set Point Control
	Enable Control

	Control Entry Points
	Write Entry Point

	Operation Entry Point

	A South Plugin Example In C/C++: the DHT11 Sensor
	The Software

	The Plugin

	Building FogLAMP and Adding the Plugin

	C++ Support Classes
	Reading

	Configuration Category

	Logger

	Hybrid Plugins

	North Plugins
	The OMF Plugin
	OMF Plugin Configuration

	Changing the OMF Plugin Configuration

	Data in the PI System

	Storage Plugins
	Data and Metadata

	Common Elements for Storage Plugins

	Filter Plugins
	Configuration

	C++ Filter Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Ingest

	Plugin Reconfigure

	Plugin Shutdown

	C++ Helper Class

	C++ Filter Example
	Plugin Interface

	Filter Class

	Filter Class Implementation

	Python Filter API
	Plugin Information

	Plugin Initialisation

	Plugin Ingestion

	Plugin Reconfigure

	Plugin Shutdown

	Python Filter Example

	Notification Delivery Plugins
	Configuration

	Notification Delivery Plugin API
	Plugin Information

	Plugin Initialise

	Plugin Delivery

	Plugin Reconfigure

	Plugin Shutdown

	Testing Your Plugin
	Initial Testing

	C/C++ Common Faults

	Running Under a Debugger
	Running a Service Under the Debugger

	Running a Task Under the Debugger

	Running the Storage Service Under the Debugger

	Using strace

	Memory Leaks and Corruptions

	Python Plugin Info

 FogLAMP makes extensive use of plugin components to extend the base functionality of the platform. In particular, plugins are used to;

	Extend the set of sensors and actuators that FogLAMP supports.

	Extend the set of services to which FogLAMP will push accumulated data gathered from those sensors.

	The mechanism by which FogLAMP buffers data internally.

	Filter plugins may be used to augment, edit or remove data as it flows through FogLAMP.

	Rule plugins extend the rules that may trigger the delivery of notifications at the edge.

	Notification delivery plugins allow for new delivery mechanisms to be integrated into FogLAMP.

This chapter presents the plugins that are bundled with FogLAMP, how to write and use new plugins to support different sensors, protocols, historians and storage devices. It will guide you through the process and entry points that are required for the various different types of plugin.

There are also numerous plugins that are available as separate packages or in separate repositories that may be used with FogLAMP.

Plugins

In this version of FogLAMP you have six types of plugins:

	South Plugins - They are responsible for communication between FogLAMP and the sensors and actuators they support. Each instance of a FogLAMP South microservice will use a plugin for the actual communication to the sensors or actuators that that instance of the South microservice supports.

	North Plugins - They are responsible for taking reading data passed to them from the South bound service and doing any necessary conversion to the data and providing the protocol to send that converted data to a north-side task.

	Storage Plugins - They sit between the Storage microservice and the physical data storage mechanism that stores the FogLAMP configuration and readings data. Storage plugins differ from other plugins in that they are written exclusively in C/C++, however they share the same common attributes and entry points that the other filter must support.

	Filter Plugins - Filter plugins are used to modify data as it flows through FogLAMP. Filter plugins may be combined into a set of ordered filters that are applied as a pipeline to either the south ingress service or the north egress task that sends data to external systems.

	Notification Rule Plugins - These are used by the optional notification service in order to evaluate data that flows into the notification service to determine if a notification should be sent.

	Notification Delivery Plugins - These plugins are used by the optional notification service to deliver a notification to a system when a notification rule has triggered. These plugins allow the mechanisms to deliver notifications to be extended.

Plugins in this version of FogLAMP

This version of FogLAMP provides the following plugins in the main repository:

	Type

	Name

	Initial

 Status

	Description

	Availability

	Notes

	Storage

	SQLite

	Enabled

	SQLite storage

for data and metadata

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	

	Storage

	Postgres

	Disabled

	PostgreSQL storage

for data and metadata

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	

	North

	OMF

	Disabled

	OSIsoft Message Format

sender to PI Connector

Relay OMF

	Ubuntu: x86_64

Ubuntu Core: x86, ARM

Raspbian

	It works with PI Connector

Relay OMF 1.2.X and 2.2. The plugin
also works against EDS and OCS.

In addition to the plugins in the main repository, there are many other plugins available in separate repositories, a list of the available plugins is maintained within this document.

Installing New Plugins

As a general rule and unless the documentation states otherwise, plugins should be installed in two ways:

	When the plugin is available as package, it should be installed when FogLAMP is running.
 This is the required method because the package executed pre and post-installation tasks that require FogLAMP to run.

	When the plugin is available as source code, it should be installed when FogLAMP is either running or not.
 You will want to manually move the plugin code into the right location where FogLAMP is installed, add pre-requisites and execute the REST commands necessary to start the plugin after you have started FogLAMP if it is not running when you start this process.

For example, this is the command to use to install the OpenWeather South plugin:

$ sudo systemctl status foglamp.service
● foglamp.service - LSB: FogLAMP
 Loaded: loaded (/etc/init.d/foglamp; bad; vendor preset: enabled)
 Active: active (running) since Wed 2018-05-16 01:32:25 BST; 4min 1s ago
 Docs: man:systemd-sysv-generator(8)
 CGroup: /system.slice/foglamp.service
 ├─13741 python3 -m foglamp.services.core
 └─13746 /usr/local/foglamp/services/storage --address=0.0.0.0 --port=40138

May 16 01:36:09 ubuntu python3[13741]: FogLAMP[13741] INFO: scheduler: foglamp.services.core.scheduler.scheduler: Process started: Schedule 'stats collection' process 'stats coll
 ['tasks/statistics', '--port=40138', '--address=127.0.0.1', '--name=stats collector']
...
FogLAMP v1.3.1 running.
FogLAMP Uptime: 266 seconds.
FogLAMP records: 0 read, 0 sent, 0 purged.
FogLAMP does not require authentication.
=== FogLAMP services:
foglamp.services.core
=== FogLAMP tasks:
$
$ sudo cp foglamp-south-openweathermap-1.2-x86_64.deb /var/cache/apt/archives/.
$ sudo apt install /var/cache/apt/archives/foglamp-south-openweathermap-1.2-x86_64.deb
Reading package lists... Done
Building dependency tree
Reading state information... Done
Note, selecting 'foglamp-south-openweathermap' instead of '/var/cache/apt/archives/foglamp-south-openweathermap-1.2-x86_64.deb'
The following packages were automatically installed and are no longer required:
 linux-headers-4.4.0-109 linux-headers-4.4.0-109-generic linux-headers-4.4.0-119 linux-headers-4.4.0-119-generic linux-headers-4.4.0-121 linux-headers-4.4.0-121-generic
 linux-image-4.4.0-109-generic linux-image-4.4.0-119-generic linux-image-4.4.0-121-generic linux-image-extra-4.4.0-109-generic linux-image-extra-4.4.0-119-generic
 linux-image-extra-4.4.0-121-generic
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed
 foglamp-south-openweathermap
0 to upgrade, 1 to newly install, 0 to remove and 0 not to upgrade.
Need to get 0 B/3,404 B of archives.
After this operation, 0 B of additional disk space will be used.
Selecting previously unselected package foglamp-south-openweathermap.
(Reading database ... 211747 files and directories currently installed.)
Preparing to unpack .../foglamp-south-openweathermap-1.2-x86_64.deb ...
Unpacking foglamp-south-openweathermap (1.2) ...
Setting up foglamp-south-openweathermap (1.2) ...
openweathermap plugin installed.
$
$ foglamp status
FogLAMP v1.3.1 running.
FogLAMP Uptime: 271 seconds.
FogLAMP records: 36 read, 0 sent, 0 purged.
FogLAMP does not require authentication.
=== FogLAMP services:
foglamp.services.core
foglamp.services.south --port=42066 --address=127.0.0.1 --name=openweathermap
=== FogLAMP tasks:
$

You may also install new plugins directly from within the FogLAMP GUI, however you will need to have setup your Linux machine to include the FogLAMP package repository in the list of repositories the Linux package manager searches for new packages.

Writing and Using Plugins

A plugin has a small set of external entry points that must exist in order for FogLAMP to load and execute that plugin. Currently plugins may be written in either Python or C/C++, the set of entry points is the same for both languages. The entry points detailed here will be presented for both languages, a more indepth discussion of writing plugins in C/C++ will then follow.

Common FogLAMP Plugin API

Every plugin provides at least one common API entry point, the plugin_info entry point. It is used to obtain information about a plugin before it is initialised and used. It allows FogLAMP to determine what type of plugin it is, e.g. a South bound plugin or a North bound plugin, obtain default configuration information for the plugin and determine version information.

Plugin Information

The information entry point is implemented as a call, plugin_info, that takes no arguments. Data is returned from this API call as a JSON document with certain well known properties.

A typical Python implementation of this would simply return a fixed dictionary object that encodes the required properties.

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

These are the properties returned by the JSON document:

	Name - A textual name that will be used for reporting purposes for this plugin.

	Version - This property allows the version of the plugin to be communicated to the plugin loader. This is used for reporting purposes only and has no effect on the way FogLAMP interacts with the plugin.

	Type - The type of the plugin, used by the plugin loader to determine if the plugin is being used correctly. The type is a simple string and may be South, North, Storage, Filter, Rule or Delivery.

Note

If you browse the FogLAMP code you may find old plugins with type device: this was the type used to indicate a South plugin and it is now deprecated.

	Interface - This property reports the version of the plugin API to which this plugin was written. It allows FogLAMP to support upgrades of the API whilst being able to recognise the version that a particular plugin is compliant with. Currently all interfaces are version 1.0.

	Configuration - This allows the plugin to return a JSON document which contains the default configuration of the plugin. This is in line with the extensible plugin mechanism of FogLAMP, each plugin will return a set of configuration items that it wishes to use, this will then be used to extend the set of FogLAMP configuration items. This structure, a JSON document, includes default values but no actual values for each configuration option. The first time FogLAMP’s configuration manager sees a category it will register the category and create values for each item using the default value in the configuration document. On subsequent calls the value already in the configuration manager will be used.
 This mechanism allows the plugin to extend the set of configuration variables whilst giving the user the opportunity to modify the value of these configuration items. It also allow new versions of plugins to add new configuration items whilst retaining the values of previous items. And new items will automatically be assigned the default value for that item.
 As an example, a plugin that wishes to maintain two configuration variables, say a GPIO pin to use and a polling interval, would return a configuration document that looks as follows:

{
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }
}

A C/C++ plugin returns the same information as a structure, this structure includes the JSON configuration document as a simple C string.

#include <plugin_api.h>

extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 "MyPlugin", // Name
 "1.0.1", // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

In the above example the constant default_config is a string that contains the JSON configuration document. In order to make the JSON easier to manage a special macro is defined in the plugin_api.h header file. This macro is called QUOTE and is designed to ease the quoting requirements to create this JSON document.

const char *default_config = QUOTE({
 "plugin" : {
 "description" : "My example plugin in C++",
 "type" : "string",
 "default" : "MyPlugin",
 "readonly" : "true"
 },
 "asset" : {
 "description" : "The name of the asset the plugin will produce",
 "type" : "string",
 "default" : "MyAsset"
 }
});

Plugin Initialization

The plugin initialization is called after the service that has loaded the plugin has collected the plugin information and resolved the configuration of the plugin but before any other calls will be made to the plugin. The initialization routine is called with the resolved configuration of the plugin, this includes values as opposed to the defaults that were returned in the plugin_info call.

This call is used by the plugin to do any initialization or state creation it needs to do. The call returns a handle which will be passed into each subsequent call of the plugin. The handle allows the plugin to have state information that is maintained and passed to it whilst allowing for multiple instances of the same plugin to be loaded by a service if desired. It is equivalent to a this or self pointer for the plugin, although the plugin is not defined as a class.

In Python a simple example of a sensor that reads a GPIO pin for data, we might choose to use that configured GPIO pin as the handle we pass to other calls.

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

A C/C++ plugin should return a value in a void pointer that can then be dereferenced in subsequent calls. A typical C++ implementation might create an instance of a class and use that instance as the handle for the plugin.

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
MyPluginClass *plugin = new MyPluginClass();

 plugin->configure(config);

 return (PLUGIN_HANDLE)plugin;
}

It should also be observed in the above C/C++ example the plugin_init call is passed a pointer to a ConfigCategory class that encapsulates the JSON configuration category for the plugin. Details of the ConfigCategory class are available in the section C++ Support Classes.

Plugin Shutdown

The plugin shutdown method is called as part of the shutdown sequence of the service that loaded the plugin. It gives the plugin the opportunity to do any cleanup operations before terminating. As with all calls it is passed the handle of our plugin instance. Plugins can not prevent the shutdown and do not have to implement any actions. In our simple sensor example there is nothing to do in order to shutdown the plugin.

A C/C++ plugin might use this plugin_shutdown call to delete the plugin class instance it created in the corresponding plugin_init call.

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 delete plugin;
}

Plugin Reconfigure

The plugin reconfigure method is called whenever the configuration of the plugin is changed. It allows for the dynamic reconfiguration of the plugin whilst it is running. The method is called with the handle of the plugin and the updated configuration document. The plugin should take whatever action it needs to and return a new or updated copy of the handle that will be passed to future calls.

The plugin reconfigure method is shared between most but not all plugin types. In particular it does not exist for the shorted lived plugins that are created to perform a single operation and then terminated. These are the north plugins and the notification delivery plugins.

Using a simple Python example of our sensor reading a GPIO pin, we extract the new pin number from the new configuration data and return that as the new handle for the plugin instance.

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

In C/C++ the plugin_reconfigure class is very similar, note however that the plugin_reconfigure call is passed the JSON configuration category as a string and not a ConfigCategory, it is easy to parse and create the C++ class however, a name for the category must be given however.

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory config("newConfiguration", newConfig);
MyPluginClass *plugin = (MyPluginClass *)*handle;

 plugin->configure(&config);
}

It should be noted that the plugin_reconfigure call may be delivered in a separate thread for a C/C++ plugin and that the plugin should implement any mutual exclusion mechanisms that are required based on the actions of the plugin_reconfigure method.

South Plugins

South plugins are used to communicate with sensors and actuators, there are two modes of plugin operation; asyncio and polled.

Polled Mode

Polled mode is the simplest form of South plugin that can be written, a poll routine is called at an interval defined in the plugin configuration. The South service determines the type of the plugin by examining at the mode property in the information the plugin returns from the plugin_info call.

Plugin Poll

The plugin poll method is called periodically to collect the readings from a poll mode sensor. As with all other calls the argument passed to the method is the handle returned by the initialization call, the return of the method should be the JSON payload of the readings to return.

The JSON payload returned, as a Python dictionary, should contain the properties; asset, timestamp, key and readings.

	Property

	Description

	asset

	The asset key of the sensor device that is being read

	timestamp

	A timestamp for the reading data

	key

	A UUID which is the unique key of this reading

	readings

	The reading data itself as a JSON object

It is important that the poll method does not block as this will prevent the proper operation of the South microservice.
Using the example of our simple DHT11 device attached to a GPIO pin, the poll routine could be:

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = { 'temperature': temperature , 'humidity' : humidity }
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

Async IO Mode

In asyncio mode the plugin inserts itself into the event processing loop of the South Service itself. This is a more complex mechanism and is intended for plugins that need to block or listen for incoming data via a network.

Plugin Start

The plugin_start method, as with other plugin calls, is called with the plugin handle data that was returned from the plugin_init call. The plugin_start call will only be called once for a plugin, it is the responsibility of plugin_start to install the plugin code into the python event handling system for asyncIO. Assuming an example whereby the interface to a sensor is via HTTP and the sensor will make HTTP POST calls to our plugin in order to send data into FogLAMP, a plugin_start for this scenario would create a web application endpoint for reception of the POST command.

loop = asyncio.get_event_loop()
app = web.Application(middlewares=[middleware.error_middleware])
app.router.add_route('POST', '/', SensorPhoneIngest.render_post)
handler = app.make_handler()
coro = loop.create_server(handler, host, port)
server = asyncio.ensure_future(coro)

This code first gets the event loop for this Python execution, it then creates the web application and adds a route for the POST request. In this case it is calling the render_post method of the object SensorPhone. It then goes on to create the handler and install the web server instance into the event system.

Async Handler

The async handler is defined for incoming message has the responsibility of taking the sensor data and ingesting that into FogLAMP. Unlike the poll mechanism, this is done from within the handler rather than by passing the data back to the South service itself. A convenient method exists for ingesting readings, Ingest.add_readings. This call is passed an asset, timestamp, key and readings document for the asset and will do everything else required to make sure the readings are stored in the FogLAMP buffer.
 In the case of our HTTP based example above, the code would create the items needed to generate the arguments to the Ingest.add_readings call, by creating data items and retrieving them from the payload sent by the sensor.

try:
 if not Ingest.is_available():
 increment_discarded_counter = True
 message = {'busy': True}
 else:
 payload = await request.json()

 asset = 'SensorPhone'
 timestamp = str(datetime.now(tz=timezone.utc))
 messages = payload.get('messages')

 if not isinstance(messages, list):
 raise ValueError('messages must be a list')

 for readings in messages:
 key = str(uuid.uuid4())
 await Ingest.add_readings(asset=asset, timestamp=timestamp, key=key, readings=readings)

except ...

It would then respond to the HTTP request and return. Since the handler is embedded in the event loop this will happen in the context of a coroutine and would happen each time a new POST request is received.

message['status'] = code
return web.json_response(message)

A South Plugin Example In Python: the DHT11 Sensor

Let’s try to put all the information together and write a plugin. We can continue to use the example of an inexpensive sensor, the DHT11, used to measure temperature and humidity, directly wired to a Raspberry PI. This plugin is available on github, FogLAMP DHT11 South Plugin.

First, here is a set of links where you can find more information regarding this sensor:

	DHT11 Product Description

	DHT11 Product Manual

	ADAFruit DHT Library

The Hardware

The DHT sensor is directly connected to a Raspberry PI 2 or 3. You may decide to buy a sensor and a resistor and solder them yourself, or you can buy a ready-made circuit that provides the correct output to wire to the Raspberry PI. This picture shows a DHT11 with resistor that you can buy online.

The sensor can be directly connected to the Raspberry PI GPIO (General Purpose Input/Output). An introduction to the GPIO and the pinset is available here. In our case, you must connect the sensor on these pins:

	VCC is connected to PIN #2 (5v Power)

	GND is connected to PIN #6 (Ground)

	DATA is connected to PIN #7 (BCM 4 - GPCLK0)

This picture shows the sensor wired to the Raspberry PI and this is a zoom into the wires used.

The Software

For this plugin we use the ADAFruit Python Library (links to the GitHub repository are above). First, you must install the library (in future versions the library will be provided in a ready-made package):

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
Cloning into 'Adafruit_Python_DHT'...
remote: Counting objects: 249, done.
remote: Total 249 (delta 0), reused 0 (delta 0), pack-reused 249
Receiving objects: 100% (249/249), 77.00 KiB | 0 bytes/s, done.
Resolving deltas: 100% (142/142), done.
$ cd Adafruit_Python_DHT
$ sudo apt-get install build-essential python-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
build-essential python-dev
...
$ sudo python3 setup.py install
running install
running bdist_egg
running egg_info
creating Adafruit_DHT.egg-info
...
$

The Plugin

This is the code for the plugin:

-*- coding: utf-8 -*-

FOGLAMP_BEGIN
See: http://foglamp.readthedocs.io/
FOGLAMP_END

""" Plugin for a DHT11 temperature and humidity sensor attached directly
 to the GPIO pins of a Raspberry Pi

 This plugin uses the Adafruit DHT library, to install this perform
 the following steps:

 git clone https://github.com/adafruit/Adafruit_Python_DHT.git
 cd Adafruit_Python_DHT
 sudo apt-get install build-essential python-dev
 sudo python setup.py install

 To access the GPIO pins foglamp must be able to access /dev/gpiomem,
 the default access for this is owner and group read/write. Either
 FogLAMP must be added to the group or the permissions altered to
 allow FogLAMP access to the device.
 """

from datetime import datetime, timezone
import uuid

from foglamp.common import logger
from foglamp.services.south import exceptions

__author__ = "Mark Riddoch"
__copyright__ = "Copyright (c) 2017 OSIsoft, LLC"
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Python module name of the plugin to load',
 'type': 'string',
 'default': 'dht11'
 },
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }

}

_LOGGER = logger.setup(__name__)
""" Setup the access to the logging system of FogLAMP """

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = {'temperature': temperature, 'humidity': humidity}
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup, to be called prior to the device service being shut down.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 Raises:
 """
 pass

Building FogLAMP and Adding the Plugin

If you have not built FogLAMP yet, follow the steps described here. After the build, you can optionally install FogLAMP following these steps.

	If you have started FogLAMP from the build directory, copy the structure of the foglamp-south-dht11/python/ directory into the python directory:

$ cd ~/FogLAMP
$ cp -R ~/foglamp-south-dht11/python/foglamp/plugins/south/dht11 python/foglamp/plugins/south/
$

	If you have installed FogLAMP by executing sudo make install, copy the structure of the foglamp-south-dht11/python/ directory into the installed python directory:

$ sudo cp -R ~/foglamp-south-dht11/python/foglamp/plugins/south/dht11 /usr/local/foglamp/python/foglamp/plugins/south/
$

Note

If you have installed FogLAMP using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/foglamp/service -d '{"name": "dht11", "type": "south", "plugin": "dht11", "enabled": true}'

Note

Each plugin repo has its own debian packaging script and documentation, And that is the recommended way to go! As above method(s) may need explicit action for linux and/or python dependencies installation.

Using the Plugin

Once south plugin is added as an enabled service, You are ready to use the DHT11 plugin.

$ curl -X GET http://localhost:8081/foglamp/service | jq

Let’s see what we have collected so far:

$ curl -s http://localhost:8081/foglamp/asset | jq
[
 {
 "count": 158,
 "asset_code": "dht11"
 }
]
$

Finally, let’s extract some values:

$ curl -s http://localhost:8081/foglamp/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:41:39.672",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:35.615",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:34.087",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:32.557",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:31.028",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 }
]
$

Clearly we will not see many changes in temperature or humidity, unless we place our thumb on the sensor or we blow warm breathe on it :-)

$ curl -s http://localhost:8081/foglamp/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:43:16.787",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:15.258",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:13.729",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:12.201",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:05.616",
 "reading": {
 "temperature": 22,
 "humidity": 95
 }
 }
]
$

Needless to say, the North plugin will send the buffered data to the PI system using the OMF plugin or any other north system using the appropriate north plugin.

[image: DHT11 in PI] [https://s3.amazonaws.com/foglamp/readthedocs/images/06_dht11_tags_in_PI.jpg]

South Plugins in C

South plugins written in C/C++ are no different in use to those written in Python, it is merely a case that they are implemented in a different language. The same options of polled or asynchronous methods still exist and the enduser of FogLAMP is not aware in which language the plugin has been written.

Polled Mode

Polled mode is the simplest form of South plugin that can be written, a poll routine is called at an interval defined in the plugin advanced configuration. The South service determines the type of the plugin by examining the mode property in the information the plugin returns from the plugin_info call.

Plugin Poll

The plugin poll method is called periodically to collect the readings from a poll mode sensor. As with all other calls the argument passed to the method is the handle returned by the plugin_init call, the return of the method should be a Reading instance that contains the data read.

The Reading class consists of

	Property

	Description

	assetName

	The asset key of the sensor device that is being read

	userTimestamp

	A timestamp for the reading data

	datapoints

	The reading data itself as a set if datapoint instances

More detail regarding the Reading class can be found in the section C++ Support Classes.

It is important that the poll method does not block as this will prevent the proper operation of the South microservice. Using the example of our simple DHT11 device attached to a GPIO pin, the poll routine could be:

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

Where our DHT11 class has a method takeReading as follows

/**
 * Take reading from sensor
 *
 * @param firstReading This flag indicates whether this is the first reading to be taken from sensor,
 * if so get it reliably even if takes multiple retries. Subsequently (firstReading=false),
 * if reading from sensor fails, last good reading is returned.
 */
Reading DHT11::takeReading(bool firstReading)
{
 static uint8_t sensorData[4] = {0,0,0,0};

 bool valid = false;
 unsigned int count=0;
 do {
 valid = readSensorData(sensorData);
 count++;
 } while(!valid && firstReading && count < MAX_SENSOR_READ_RETRIES);

 if (firstReading && count >= MAX_SENSOR_READ_RETRIES)
 Logger::getLogger()->error("Unable to get initial valid reading from DHT11 sensor connected to pin %d even after %d tries", m_pin, MAX_SENSOR_READ_RETRIES);

 vector<Datapoint *> vec;

 ostringstream tmp;
 tmp << ((unsigned int)sensorData[0]) << "." << ((unsigned int)sensorData[1]);
 DatapointValue dpv1(stod(tmp.str()));
 vec.push_back(new Datapoint("Humidity", dpv1));

 ostringstream tmp2;
 tmp2 << ((unsigned int)sensorData[2]) << "." << ((unsigned int)sensorData[3]);
 DatapointValue dpv2(stod(tmp2.str()));
 vec.push_back(new Datapoint ("Temperature", dpv2));

 return Reading(m_assetName, vec);
}

We are creating two DatapointValues for the Humidity and Temperature values returned by reading the DHT11 sensor.

Plugin Poll Returning Multiple Values

It is possible in a C/C++ plugin to have a plugin that returns multiple readings in a single call to a poll routine. This is done by setting the interface version of 2.0.0 rather than 1.0.0. In this interface version the plugin_poll call returns a vector of Reading rather than a single Reading.

/**
 * Poll for a plugin reading
 */
std::vector<Reading *> *plugin_poll(PLUGIN_HANDLE *handle)
{
Modbus *modbus = (Modbus *)handle;

 if (!handle)
 throw runtime_error("Bad plugin handle");
 return modbus->takeReading();
}

Async IO Mode

In asyncio mode the plugin runs either a separate thread or uses some incoming event from a device or callback mechanism to trigger sending data to FogLAMP. The asynchronous mode uses two additional entry points to the plugin, one to register a callback on which the plugin sends data, plugin_register_ingest and another to start the asynchronous behavior plugin_start.

Plugin Register Ingest

The plugin_register_ingest call is used to allow the south service to pass a callback function to the plugin that the plugin uses to send data to the service every time the plugin has some new data.

/**
 * Register ingest callback
 */
void plugin_register_ingest(PLUGIN_HANDLE *handle, INGEST_CB cb, void *data)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 if (!handle)
 throw new exception();
 plugin->registerIngest(data, cb);
}

The plugin should store the callback function pointer and the data associated with the callback such that it can use that information to pass a reading to the south service. The following code snippets show how a plugin class might store the callback and data and then use it to send readings into FogLAMP at a later stage.

/**
 * Record the ingest callback function and data in member variables
 *
 * @param data The Ingest function data
 * @param cb The callback function to call
 */
void MyPluginClass::registerIngest(void *data, INGEST_CB cb)
{
 m_ingest = cb;
 m_data = data;
}

/**
 * Called when a data is available to send to the south service
 *
 * @param points The points in the reading we must create
 */
void MyPluginClass::ingest(Reading& reading)
{

 (*m_ingest)(m_data, reading);
}

Plugin Start

The plugin_start method, as with other plugin calls, is called with the plugin handle data that was returned from the plugin_init call. The plugin_start call will only be called once for a plugin, it is the responsibility of plugin_start to take whatever action is required in the plugin in order to start the asynchronous actions of the plugin. This might be to start a thread, register an endpoint for a remote connection or call an entry point in a third party library to start asynchronous processing.

/**
 * Start the Async handling for the plugin
 */
void plugin_start(PLUGIN_HANDLE *handle)
{
MyPluginClass *plugin = (MyPluginClass *)handle;

 if (!handle)
 return;
 plugin->start();
}

/**
 * Start the asynchronous processing thread
 */
void MyPluginClass::start()
{
 m_running = true;
 m_thread = new thread(threadWrapper, this);
}

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the flags in the plugin information data structure which is returned by the plugin_info entry point of the plugin. The flag value SP_CONTROL should be added to the flags of the plugin.

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 SP_CONTROL, // Flags - add control
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 CONFIG // Default configuration
};

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

bool plugin_write(PLUGIN_HANDLE *handle, string name, string value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign top the item

The return value defines if the write was successful or not. True is returned for a successful write.

bool plugin_write(PLUGIN_HANDLE *handle, string& name, string& value)
{
Random *random = (Random *)handle;

 return random->write(operation, name, value);
}

In this case the main logic of the write operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

bool Random::write(string& name, string& value)
{
 if (name.compare("mode") == 0)
 {
 if (value.compare("relative") == 0)
 {
 m_mode = RELATIVE_MODE;
 }
 else if (value.compare("absolute") == 0)
 {
 m_mode = ABSOLUTE_MODE;
 }
 Logger::getLogger()->error("Unknown mode requested '%s' ignored.", value.c_str());
 return false;
 }
 else
 {
 Logger::getLogger()->error("Unknown control item '%s' ignored.", name.c_str());
 return false;
 }
 return true;
}

In this case the code is relatively simple as we assume there is a single control parameter that can be written, the mode of operation. We look for the known name and if a different name is passed an error is logged and false is returned. If the correct name is passed in we then check the value and take the appropriate action. If the value is not a recognized value then an error is logged and we again return false.

In this case we are merely setting a value within the plugin, this could equally well be done via configuration and would in that case be persisted between restarted. Normally control would not be used for this, but rather for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the mechanism.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	count the number of parameters

	params a set of name/value pairs that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed, that operation may also be passed a number of parameters. The count of these parameters are passed to the plugin in the count argument and the actual parameters are passed in an array of key/value pairs as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)
{
Random *random = (Random *)handle;

 return random->operation(operation, count, params);
}

In this case the main logic of the operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

/**
 * SetPoint operation. We support reseeding the random number generator
 */
bool Random::operation(const std::string& operation, int count, PLUGIN_PARAMETER **params)
{
 if (operation.compare("seed") == 0)
 {
 if (count)
 {
 if (params[0]->name.compare("seed"))
 {
 long seed = strtol(params[0]->value.c_str(), NULL, 10);
 srand(seed);
 }
 else
 {
 return false;
 }
 }
 else
 {
 srand(time(0));
 }
 Logger::getLogger()->info("Reseeded random number generator");
 return true;
 }
 Logger::getLogger()->error("Unrecognised operation %s", operation.c_str());
 return false;
}

In this example, the operation method checks the name of the operation to perform, only a single operation is supported by this plugin. If this operation name differs the method will log an error and return false. If the operation is recognized it will check for any arguments passed in, retrieve and use it. In this case an optional seed argument may be passed.

There is no actual machine connected here, therefore the operation occurs within the plugin. In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself.

A South Plugin Example In C/C++: the DHT11 Sensor

Using the same example as before, the DHT11 temperature and humidity sensor, let’s look at how to create the plugin in C/C++.

The Software

For this plugin we use the wiringpi C library to connect to the hardware of the Raspberry Pi

$ sudo apt-get install wiringpi
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
wiringpi
...
$

The Plugin

This is the code for the plugin.cpp file that provides the plugin API:

/*
 * FogLAMP south plugin.
 *
 * Copyright (c) 2018 OSisoft, LLC
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Amandeep Singh Arora
 */
#include <dht11.h>
#include <plugin_api.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string>
#include <logger.h>
#include <plugin_exception.h>
#include <config_category.h>
#include <rapidjson/document.h>
#include <version.h>

using namespace std;
#define PLUGIN_NAME "dht11_V2"

/**
 * Default configuration
 */
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "DHT11 C south plugin",
 "type" : "string",
 "default" : PLUGIN_NAME,
 "readonly": "true"
 },
 "asset" : {
 "description" : "Asset name",
 "type" : "string",
 "default" : "dht11",
 "order": "1",
 "displayName": "Asset Name",
 "mandatory" : "true"
 },
 "pin" : {
 "description" : "Rpi pin to which DHT11 is attached",
 "type" : "integer",
 "default" : "7",
 "displayName": "Rpi Pin"
 }
 });

/**
 * The DHT11 plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
 unsigned int pin;

 if (config->itemExists("pin"))
 {
 pin = stoul(config->getValue("pin"), nullptr, 0);
 }

 DHT11 *dht11= new DHT11(pin);

 if (config->itemExists("asset"))
 dht11->setAssetName(config->getValue("asset"));
 else
 dht11->setAssetName("dht11");

 Logger::getLogger()->info("m_assetName set to %s", dht11->getAssetName());

 return (PLUGIN_HANDLE)dht11;
}

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory conf("dht", newConfig);
DHT11 *dht11 = (DHT11*)*handle;

 if (conf.itemExists("asset"))
 dht11->setAssetName(conf.getValue("asset"));
 if (conf.itemExists("pin"))
 {
 unsigned int pin = stoul(conf.getValue("pin"), nullptr, 0);
 dht11->setPin(pin);
 }
}

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 delete dht11;
}
};

The full source code, including the DHT11 class can be found in GitHub https://github.com/foglamp/foglamp-south-dht

Building FogLAMP and Adding the Plugin

If you have not built FogLAMP yet, follow the steps described here. After the build, you can optionally install FogLAMP following these steps.

	Clone the foglamp-south-dht repository

$ git clone https://github.com/foglamp/foglamp-south-dht.git
...
$

	Set the environment variable FOGLAMP_ROOT to the directory in which you built FogLAMP

$ export FOGLAMP_ROOT=~/foglamp
$

	Go to the location in which you cloned the foglamp-south-dht repository and create a build directory and run cmake in that directory

$ cd ~/foglamp-south-dht
$ mkdir build
$ cd build
$ cmake ..
...
$

	Now make the plugin

$ make
$

	If you have started FogLAMP from the build directory, copy the plugin into the destination directory

$ mkdir -p $FOGLAMP_ROOT/plugins/south/dht
$ cp libdht.so $FOGLAMP_ROOT/plugins/south/dht
$

	If you have installed FogLAMP by executing sudo make install, copy the plugin into the destination directory

$ sudo mkdir -p /usr/local/foglamp/plugins/south/dht
$ sudo cp libdht.so /usr/local/foglamp/plugins/south/dht
$

Note

If you have installed FogLAMP using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/foglamp/service -d '{"name": "dht", "type": "south", "plugin": "dht", "enabled": true}'

You may now use the C/C++ plugin in exactly the same way as you used a Python plugin earlier.

C++ Support Classes

A number of support classes exist within the common library that forms part of every FogLAMP plugin.

Reading

The Reading class and the associated Datapoint and DatapointValue classes provide the mechanism within C++ classes to manipulated the reading asset data. The public part of the Reading class is currently defined as follows;

class Reading {
 public:
 Reading(const std::string& asset, Datapoint *value);
 Reading(const std::string& asset, std::vector<Datapoint *> values);
 Reading(const std::string& asset, std::vector<Datapoint *> values, const std::string& ts);
 Reading(const Reading& orig);

 ~Reading();
 void addDatapoint(Datapoint *value);
 Datapoint *removeDatapoint(const std::string& name);
 std::string toJSON(bool minimal = false) const;
 std::string getDatapointsJSON() const;
 // Return AssetName
 const std::string& getAssetName() const { return m_asset; };
 // Set AssetName
 void setAssetName(std::string assetName) { m_asset = assetName; };
 unsigned int getDatapointCount() { return m_values.size(); };
 void removeAllDatapoints();
 // Return Reading datapoints
 const std::vector<Datapoint *> getReadingData() const { return m_values; };
 // Return refrerence to Reading datapoints
 std::vector<Datapoint *>& getReadingData() { return m_values; };
 unsigned long getId() const { return m_id; };
 unsigned long getTimestamp() const { return (unsigned long)m_timestamp.tv_sec; };
 unsigned long getUserTimestamp() const { return (unsigned long)m_userTimestamp.tv_sec; };
 void setId(unsigned long id) { m_id = id; };
 void setTimestamp(unsigned long ts) { m_timestamp.tv_sec = (time_t)ts; };
 void setTimestamp(struct timeval tm) { m_timestamp = tm; };
 void setTimestamp(const std::string& timestamp);
 void getTimestamp(struct timeval *tm) { *tm = m_timestamp; };
 void setUserTimestamp(unsigned long uTs) { m_userTimestamp.tv_sec = (time_t)uTs; };
 void setUserTimestamp(struct timeval tm) { m_userTimestamp = tm; };
 void setUserTimestamp(const std::string& timestamp);
 void getUserTimestamp(struct timeval *tm) { *tm = m_userTimestamp; };

 typedef enum dateTimeFormat { FMT_DEFAULT, FMT_STANDARD, FMT_ISO8601 } readingTimeFormat;

 // Return Reading asset time - ts time
 const std::string getAssetDateTime(readingTimeFormat datetimeFmt = FMT_DEFAULT, bool addMs = true) const;
 // Return Reading asset time - user_ts time
 const std::string getAssetDateUserTime(readingTimeFormat datetimeFmt = FMT_DEFAULT, bool addMs = true) const;
}

The Reading class contains a number of items that are mapped to the JSON representation of data that is sent to the FogLAMP storage service and are used by the various services and plugins within FogLAMP.

	Asset Name: The name of the asset. The asset name is set in the constructor of the reading and retrieved via the getAssetName() method.

	Timestamp: The timestamp when the reading was first seen within FogLAMP.

	User Timestamp: The timestamp for the actual data in the reading. This may differ from the value of Timestamp if the device itself is able to supply a timestamp value.

	Datapoints: The actual data of a reading stored in a Datapoint class.

The Datapoint class provides a name for each data point within a Reading and the tagged type data for the reading value. The public definition of the Datapoint class is as follows;

class Datapoint {
 public:
 /**
 * Construct with a data point value
 */
 Datapoint(const std::string& name, DatapointValue& value) : m_name(name), m_value(value);
 ~Datapoint();
 /**
 * Return asset reading data point as a JSON
 * property that can be included within a JSON
 * document.
 */
 std::string toJSONProperty();
 const std::string getName() const;
 void setName(std::string name);
 const DatapointValue getData() const;
 DatapointValue& getData();
}

Closely associated with the Datapoint is the DatapointValue which uses a tagged union to store the values. The public definition of the DatapointValue is as follows;

class DatapointValue {
 public:
 /**
 * Constructors for the various types
 */
 DatapointValue(const std::string& value;
 DatapointValue(const long value);
 DatapointValue(const double value);
 DatapointValue(const std::vector<double>& values);
 DatapointValue(std::vector<Datapoint*>*& values, bool isDict)
 DatapointValue(const DatapointValue& obj)

 DatapointValue& operator=(const DatapointValue& rhs)
 ~DatapointValue();

 void deleteNestedDPV();

 /**
 * Set the value for the various types
 */
 void setValue(long value);
 void setValue(double value);

 /**
 * Return the value as the various types
 */
 std::string toString() const;
 long toInt() const;
 double toDouble() const;

 typedef enum DatapointTag
 {
 T_STRING,
 T_INTEGER,
 T_FLOAT,
 T_FLOAT_ARRAY,
 T_DP_DICT,
 T_DP_LIST
 } dataTagType;
 dataTagType getType() const;
 std::string getTypeStr() const;
 std::vector<Datapoint*>*& getDpVec();
}

Configuration Category

The ConfigCategory class is a support class for managing configuration information within a plugin and is passed to the plugin entry points. The public definition of the class is as follows;

class ConfigCategory {
 public:
 enum ItemType {
 UnknownType,
 StringItem,
 EnumerationItem,
 JsonItem,
 BoolItem,
 NumberItem,
 DoubleItem,
 ScriptItem,
 CategoryType,
 CodeItem
 };

 ConfigCategory(const std::string& name, const std::string& json);
 ConfigCategory() {};
 ConfigCategory(const ConfigCategory& orig);
 ~ConfigCategory();
 void addItem(const std::string& name, const std::string description,
 const std::string& type, const std::string def,
 const std::string& value);
 void addItem(const std::string& name, const std::string description,
 const std::string def, const std::string& value,
 const std::vector<std::string> options);
 void removeItems();
 void removeItemsType(ItemType type);
 void keepItemsType(ItemType type);
 bool extractSubcategory(ConfigCategory &subCategories);
 void setDescription(const std::string& description);
 std::string getName() const;
 std::string getDescription() const;
 unsigned int getCount() const;
 bool itemExists(const std::string& name) const;
 bool setItemDisplayName(const std::string& name, const std::string& displayName);
 std::string getValue(const std::string& name) const;
 std::string getType(const std::string& name) const;
 std::string getDescription(const std::string& name) const;
 std::string getDefault(const std::string& name) const;
 bool setDefault(const std::string& name, const std::string& value);
 std::string getDisplayName(const std::string& name) const;
 std::vector<std::string> getOptions(const std::string& name) const;
 std::string getLength(const std::string& name) const;
 std::string getMinimum(const std::string& name) const;
 std::string getMaximum(const std::string& name) const;
 bool isString(const std::string& name) const;
 bool isEnumeration(const std::string& name) const;
 bool isJSON(const std::string& name) const;
 bool isBool(const std::string& name) const;
 bool isNumber(const std::string& name) const;
 bool isDouble(const std::string& name) const;
 bool isDeprecated(const std::string& name) const;
 std::string toJSON(const bool full=false) const;
 std::string itemsToJSON(const bool full=false) const;
 ConfigCategory& operator=(ConfigCategory const& rhs);
 ConfigCategory& operator+=(ConfigCategory const& rhs);
 void setItemsValueFromDefault();
 void checkDefaultValuesOnly() const;
 std::string itemToJSON(const std::string& itemName) const;
 enum ItemAttribute { ORDER_ATTR, READONLY_ATTR, MANDATORY_ATTR, FILE_ATTR};
 std::string getItemAttribute(const std::string& itemName,
 ItemAttribute itemAttribute) const;
}

Although ConfigCategory is a complex class, only a few of the methods are commonly used within a plugin

	itemExists: - used to test if an expected configuration item exists within the configuration category.

	getValue: - return the value of a configuration item from within the configuration category

	isBool: - tests if a configuration item is of boolean type

	isNumber: - tests if a configuration item is a number

	isDouble: - tests if a configuration item is valid to be represented as a double

	isString: - tests if a configuration item is a string

Logger

The Logger class is used to write entries to the syslog system within FogLAMP. A singleton Logger exists which can be obtained using the following code snippet;

Logger *logger = Logger::getLogger();
logger->error("An error has occurred within the plugin processing");

It is then possible to log messages at one of five different log levels; debug, info, warn, error or fatal. Messages may be logged using standard printf formatting strings. The public definition of the Logger class is as follows;

class Logger {
 public:
 Logger(const std::string& application);
 ~Logger();
 static Logger *getLogger();
 void debug(const std::string& msg, ...);
 void printLongString(const std::string&);
 void info(const std::string& msg, ...);
 void warn(const std::string& msg, ...);
 void error(const std::string& msg, ...);
 void fatal(const std::string& msg, ...);
 void setMinLevel(const std::string& level);
};

The various log levels should be used as follows;

	debug: should be used to output messages that are relevant only to a programmer that is debugging the plugin.

	info: should be used for information that is meaningful to the end users, but should not normally be logged.

	warn: should be used for warning messages that will normally be logged but reflect a condition that does not prevent the plugin from operating.

	error: should be used for conditions that cause a temporary failure in processing within the plugin.

	fatal: should be used for conditions that cause the plugin to fail processing permanently, possibly requiring a restart of the microservice in order to resolve.

Hybrid Plugins

In addition to plugins written in Python and C/C++ it is possible to have a hybrid plugin that is a combination of an existing plugin and configuration for that plugin. This is useful in a situation whereby there are multiple sensors or devices that you connect to FogLAMP that have common configuration. It allows devices to be added without repeating the common configuration.

Using our example of a DHT11 sensor connected to a GPIO pin, if we wanted to create a new plugin for a DHT11 that was always connected to pin 4 then we could do this by creating a JSON file as below that supplies a fixed default value for the GPIO pin.

{
 "description" : "A DHT11 sensor connected to GPIO pin 4",
 "name" : "DHT11-4",
 "connection" : "DHT11",
 "defaults" : {
 "pin" : {
 "default" : "4"
 }
 }
}

This creates a new hybrid plugin called DHT11-4 that is installed by copying this file into the plugins/south/DHT11-4 directory of your installation. Once installed it can be treated as any other south plugin within FogLAMP. The effect of this hybrid plugin is to load the DHT11 plugin and always set the configuration parameter called “pin” to the value “4”. The item “pin” will hidden from the user in the FogLAMP GUI when they create the instance of the plugin. This allows for a simpler and more streamlined user experience when adding plugins with common configuration.

The items in the JSON file are;

	Name

	Description

	description

	A description of the hybrid plugin. This will appear the right of the selection list in the FogLAMP user interface when the plugin is selected.

	name

	The name of the plugin itself. This must match the filename of the JSON file and also the name of the directory the file is placed in.

	connection

	The name of the underlying plugin that will be used as the basis for this hybrid plugin. This must be a C/C++ or Python plugin, it can not be another hybrid plugin.

	defaults

	The set of values to default in this hybrid plugin. These are configuration parameters of the underlying plugin that will be fixed in the hybrid plugin. Each hybrid plugin can have one or my values here.

It may not be difficult to enter the GPIO pin in each case in this example, where it becomes more useful is for plugins such as Modbus where a complex map is required to be entered in a JSON document. By using a hybrid plugin we can define the map we need once and then add new sensors of the same type without having to repeat the map. An example of this would be the Flir AX8 camera that require a total of 176 Modbus registers to be mapped into 88 different values in an asset. A hybrid plugin foglamp-south-FlirAX8 defines that mapping once and as a result adding a new Flir AX8 camera is as simple as selecting the FlirAX8 hybrid plugin and entering the IP address of the camera.

North Plugins

North plugins are used in North tasks and microservices to extract data buffered in FogLAMP and send it Northbound, i.e. to a server or a service in the Cloud or in an Enterprise data center. We currently have two North plugins, one to send data to an OSIsoft PI Server and one to the OSIsoft Cloud Service.

The OMF Plugin

The OMF Plugin is used by a North task to send data to an OSIsoft PI server via a PI Connector Relay or PI Web API, it can also send to Edge Data Store or OSIsoft Cloud Services. All these destinations share a single protocol for communication, OMF. OMF stands for OSIsoft Message Format, it is the JSON format defined by OSIsoft to send IoT data to a PI server via a Connector Relay server.

The plugin is designed to send two streams of data:

	The data collected by South microservices and buffered into FogLAMP

	The statistics generated by FogLAMP

The streams are managed by two different North tasks using the same plugin, but with a different configuration. The two tasks are registered in the list of scheduled jobs and they can be identified using the schedule API call:

$ curl -sX GET http://locahost:8081/foglamp/schedule
{
 "schedules": [
 {
 "id": "ef8bd42b-da9f-47c4-ade8-751ce9a504be",
 "name": "OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30.0,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": false
 },
 {
 "id": "27501b35-e0cd-4340-afc2-a4465fe877d6",
 "name": "Stats OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30.0,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
 },
 ...
]
}

The output of API call above shows three interesting tasks: the two tasks associated to the OMF plugin, the one to send data (OMF to PI north) and the one to send statistics (Stats OMF to PI north).

The two scheduled tasks are associated to two configuration items that can be retrieved using the category API call. The items are named OMF to PI north and Stats OMF to PI north.

$ curl -sX GET http://localhost:8081/foglamp/category/OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "4",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "readings"
 },
...}
$ curl -sX GET http://localhost:8081/foglamp/category/Stats%20OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "5",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "statistics"
 },
...}
$

In order to activate the tasks, you must change their status. First you must collect their id (from the GET method of the schedule API call), then you must use the IDs with the PUT method of the same call:

$ curl -sX PUT http://localhost:8081/foglamp/schedule/ef8bd42b-da9f-47c4-ade8-751ce9a504be -d '{ "enabled" : true}'
{
 "schedule": {
 "id": "ef8bd42b-da9f-47c4-ade8-751ce9a504be",
 "name": "OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
 }
}
$ curl -sX PUT http://localhost:8081/foglamp/schedule/27501b35-e0cd-4340-afc2-a4465fe877d6 -d '{ "enabled" : true}'
{
 "schedule": {
 "id": "27501b35-e0cd-4340-afc2-a4465fe877d6",
 "name": "Stats OMF to PI north",
 "processName": "north_c",
 "type": "INTERVAL",
 "repeat": 30,
 "time": 0,
 "day": null,
 "exclusive": true,
 "enabled": true
 }
}
$

At this point, the configuration has been enriched with default values of the tasks:

$ curl -sX GET http://localhost:8081/foglamp/category/OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "4",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "readings"
 },
...}
$ curl -sX GET http://localhost:8081/foglamp/category/Stats%20OMF%20to%20PI%20north
{
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the sending process.",
 "type": "boolean",
 "readonly": "true",
 "default": "true",
 "value": "true"
 },
 "streamId": {
 "description": "Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.",
 "type": "integer",
 "readonly": "true",
 "default": "0",
 "value": "5",
 "order": "16"
 },
 "plugin": {
 "description": "PI Server North C Plugin",
 "type": "string",
 "default": "OMF",
 "readonly": "true",
 "value": "OMF"
 },
 "source": {
 "description": "Defines the source of the data to be sent on the stream, this may be one of either readings, statistics or audit.",
 "type": "enumeration",
 "options": [
 "readings",
 "statistics"
],
 "default": "readings",
 "order": "5",
 "displayName": "Data Source",
 "value": "statistics"
 },
...}
$

OMF Plugin Configuration

The following table presents the list of configuration options available for the task that sends data to OMF (category OMF to PI north):

	Item

	Type

	Default

	Description

	AFMap

	JSON

	{ }

	Defines a set of rules to address where assets should be placed in the AF hierarchy.

	compression

	boolean

	true

	Compress readings data before sending to PI server

	DefaultAFLocation

	integer

	/foglamp/data_piwebapi/default

	Defines the hierarchies tree in Asset Framework in which the assets will be created, each level is separated by /, PI Web API only.

	enable

	boolean

	True

	A switch that can be used to enable or disable execution of the sending process.

	formatInteger

	string

	int64

	OMF format property to apply to the type Integer.

	formatNumber

	string

	float64

	OMF format property to apply to the type Number

	notBlockingErrors

	JSON

	“{ “errors400” : [“Redefinition of the type with the same ID is not allowed”, “Invalid value type for the property”, “Property does not exist in the type definition”, “Container is not defined”, “Unable to find the property of the container of type”] }”

	These errors are considered not blocking in the communication with the PI Server, the sending operation will proceed with the next block of data if one of these is encountered.

	OCSClientSecret

	boolean

	ocs_client_secret

	Client secret associated to the specific OCS account, it is used to authenticate the source for using the OCS API.

	OCSClientId

	string

	ocs_client_id

	Client id associated to the specific OCS account, it is used to authenticate the source for using the OCS API.

	OCSTenantId

	string

	ocs_tenant_id

	Tenant id associated to the specific OCS account

	OCSNamespace

	string

	name_space

	Specifies the OCS namespace where the information are stored and it is used for the interaction with the OCS API.

	OMFHttpTimeout

	integer

	10

	Timeout in seconds for the HTTP operations with the OMF PI Connector Relay

	OMFMaxRetry

	integer

	1

	Seconds between each retry for the communication with the OMF PI Connector Relay, NOTE : the time is doubled at each attempt.

	PIWebAPIKerberosKeytabFileName

	string

	piwebapi_kerberos_https.keytab

	Keytab file name used for Kerberos authentication in PI Web API.

	PIWebAPIAuthenticationMethod

	enumeration

	anonymous

	Defines the authentication method to be used with the PI Web API.

	PIWebAPIPassword

	password

	password

	Password of the user of PI Web API to be used with the basic access authentication.

	PIWebAPIUserId

	string

	user_id

	User id of PI Web API to be used with the basic access authentication.

	PIServerEndpoint

	enumeration

	Connector Relay

	Select the endpoint among PI Web API, connector Relay, OSIsoft Cloud Services or Edge Data Store

	plugin

	string

	OMF

	PI Server North C Plugin

	producerToken

	string

	omf_north_0001

	The producer token that represents this FogLAMP stream

	ServerHostname

	string

	localhost

	Hostname of the server running the endpoint either PI Web API or Connector Relay

	ServerPort

	integer

	0

	Port on which the endpoint either PI Web API or Connector Relay or Edge Data Store is listening, 0 will use the default one

	source

	enumeration

	readings

	Defines the source of the data to be sent the stream, this may be one of either readings, statistics or audit.

	StaticData

	JSON

	{ “Location” : “Palo Alto”,”Company” : “Dianomic” }

	Static data to include in each sensor reading sent to the PI Server.

	stream_id

	integer

	0

	Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.

The following table presents the list of configuration options available for the task that sends statistics to OMF (category Stats OMF to PI north):

	Item

	Type

	Default

	Description

	AFMap

	JSON

	{ }

	Defines a set of rules to address where assets should be placed in the AF hierarchy.

	compression

	boolean

	true

	Compress readings data before sending to PI server

	DefaultAFLocation

	integer

	/foglamp/data_piwebapi/default

	Defines the hierarchies tree in Asset Framework in which the assets will be created, each level is separated by /, PI Web API only.

	enable

	boolean

	True

	A switch that can be used to enable or disable execution of the sending process.

	formatInteger

	string

	int64

	OMF format property to apply to the type Integer.

	formatNumber

	string

	float64

	OMF format property to apply to the type Number

	notBlockingErrors

	JSON

	“{ “errors400” : [“Redefinition of the type with the same ID is not allowed”, “Invalid value type for the property”, “Property does not exist in the type definition”, “Container is not defined”, “Unable to find the property of the container of type”] }”

	These errors are considered not blocking in the communication with the PI Server, the sending operation will proceed with the next block of data if one of these is encountered.

	OCSClientSecret

	boolean

	ocs_client_secret

	Client secret associated to the specific OCS account, it is used to authenticate the source for using the OCS API.

	OCSClientId

	string

	ocs_client_id

	Client id associated to the specific OCS account, it is used to authenticate the source for using the OCS API.

	OCSTenantId

	string

	ocs_tenant_id

	Tenant id associated to the specific OCS account

	OCSNamespace

	string

	name_space

	Specifies the OCS namespace where the information are stored and it is used for the interaction with the OCS API.

	OMFHttpTimeout

	integer

	10

	Timeout in seconds for the HTTP operations with the OMF PI Connector Relay

	OMFMaxRetry

	integer

	1

	Seconds between each retry for the communication with the OMF PI Connector Relay, NOTE : the time is doubled at each attempt.

	PIWebAPIKerberosKeytabFileName

	string

	piwebapi_kerberos_https.keytab

	Keytab file name used for Kerberos authentication in PI Web API.

	PIWebAPIAuthenticationMethod

	enumeration

	anonymous

	Defines the authentication method to be used with the PI Web API.

	PIWebAPIPassword

	password

	password

	Password of the user of PI Web API to be used with the basic access authentication.

	PIWebAPIUserId

	string

	user_id

	User id of PI Web API to be used with the basic access authentication.

	PIServerEndpoint

	enumeration

	Connector Relay

	Select the endpoint among PI Web API, connector Relay, OSIsoft Cloud Services or Edge Data Store

	plugin

	string

	OMF

	PI Server North C Plugin

	producerToken

	string

	omf_north_0001

	The producer token that represents this FogLAMP stream

	ServerHostname

	string

	localhost

	Hostname of the server running the endpoint either PI Web API or Connector Relay

	ServerPort

	integer

	0

	Port on which the endpoint either PI Web API or Connector Relay or Edge Data Store is listening, 0 will use the default one

	source

	enumeration

	readings

	Defines the source of the data to be sent the stream, this may be one of either readings, statistics or audit.

	StaticData

	JSON

	{ “Location” : “Palo Alto”,”Company” : “Dianomic” }

	Static data to include in each sensor reading sent to the PI Server.

	stream_id

	integer

	0

	Identifies the specific stream to handle and the related information, among them the ID of the last object streamed.

The last parameter to review is the OMF Type. The call is the GET method foglamp/category/OMF_TYPES, which returns an integer value that identifies the measurement type:

$ curl -sX GET http://localhost:8081/foglamp/category/OMF_TYPES
{
 "type-id": {
 "description": "Identify sensor and measurement types",
 "type": "integer",
 "default": "0001",
 "value": "0001"
 }
}
$

If you change the value, you can easily identify the set of data sent to and then stored into PI.

Changing the OMF Plugin Configuration

Before you send data to the PI server, it is likely that you need to apply more changes to the configuration. The most important items to change are:

	URL : the URL to the PI Connector Relay OMF. It is usually composed by the name or address of the Windows server where the Connector Relay service is running, the port associated to the service and the ingress/messages API call. The communication is via HTTPS protocol.

	producerToken : the token provided by the Data Collection Manager when the PI administrator sets the use of FogLAMP.

	type-id : the measurement type for the stream of data.

	source : this parameter should be set to readings (default) when the plugin is used to send data collected by South microservices, and to statistics when the plugin is used to send FogLAMP statistics to the PI system.

An example of the changes to apply to the plugins to send data to the PI system is available here here.

Data in the PI System

Once the North plugins have been set properly, you should expect to see data automatically sent and stored in the PI Server. More specifically, the process of the plugin is the following:

	Assets buffered in FogLAMP are stored as elements in the PI System.
- PI Asset Framework is automatically update with the new assets.
- JSON objects captured as part of the reading in FogLAMP become attributes in the PI Data Archive

	The Producer Token is used to authenticate and create the hierarchy of elements in the PI Asset Framework

	The configuration object named as Static Data is added as a set of attributes in the PI Data Archive

	System

	Object

	Value

	FogLAMP

	Producer Token

	readings_001

	
	OMF Type

	001

	
	Static Data

	{ “Company” : “Dianomic”, “Location” : “Palo Alto”}

	
	Asset

	fogbench/accelerometer

	
	Reading

	[{“reading”:{“y”:1,”z”:1,”x”:-1}, “timestamp”:”2018-05-14 19:27:06.788}]

	PI

	Element Template

	[OMF.readings_001 Connector.0001_fogbench/accelerometer_typename_sensor]

	
	Attribute Template

	[OMF.readings_001 Connector.0001_fogbench/accelerometer_typename_sensor]

	
	
	Company | Configuration Item, Excluded, String

	
	
	Location | Configuration Item, Excluded, String

	
	
	x | Excluded, Int64

	
	
	y | Excluded, Int64

	
	
	z | Excluded, Int64

	
	Element

	foglamp > readings_001 > fogbench/accelerometer

	
	Attributes

	Company | Dianomic | 1970-01-01 00:00:00

	
	
	Location | Palo Alto | 1970-01-01 00:00:00

	
	
	x | -1 | 2018-05-14 19:27:06.788

	
	
	y | -1 | 2018-05-14 19:27:06.788

	
	
	z | -1 | 2018-05-14 19:27:06.788

Storage Plugins

Storage plugins are used to interact with the Storage Microservice and provide the persistent storage of information for FogLAMP.

The current version of FogLAMP comes with three storage plugins:

	The SQLite plugin: this is the default plugin and it is used for general purpose storage on constrained devices.

	The SQLite In Memory plugin: this plugin can be used in conjunction with one of the other storage plugins and will provide an in memory storage system for reading data only. Configuration data is stored using the SQLite or PostgreSQL plugins.

	The PostgreSQL plugin: this plugin can be set on request (or it can be built as a default plugin from source) and it is used for a more significant demand of storage on relatively larger systems.

Data and Metadata

Persistency is split in two blocks:

	Metadata persistency: it refers to the storage of metadata for FogLAMP, such as the configuration of the plugins, the scheduling of jobs and tasks and the the storage of statistical information.

	Data persistency: it refers to the storage of data collected from sensors and devices by the South microservices. The SQLite In Memory plugin is an example of a storage plugin designed to store only the data.

In the current implementation of FogLAMP, metadata and data use the same Storage plugin by default. Administrators can select different plugins for these two categories of data, with the most common configuration of this type to use the SQLite In Memory storage service for data and SQLite for the metadata. This is set by editing the storage configuration file. Currently there is no interface within FogLAMP to change the storage configuration.

The storage configuration file is stored in the FogLAMP data directory as etc/storage.json, the default storage configuration file is

{
 "plugin": {
 "value": "sqlite",
 "description": "The main storage plugin to load"
 },
 "readingPlugin": {
 "value": "",
 "description": "The storage plugin to load for readings data. If blank the main storage plugin is used."
 },
 "threads": {
 "value": "1",
 "description": "The number of threads to run"
 },
 "managedStatus": {
 "value": "false",
 "description": "Control if FogLAMP should manage the storage provider"
 },
 "port": {
 "value": "0",
 "description": "The port to listen on"
 },
 "managementPort": {
 "value": "0",
 "description": "The management port to listen on."
 }
}

This sets the storage plugin to use as the SQLite plugin and leaves the readingPlugin blank. If the readingPlugin is blank then readings will be stored via the main plugin, if it is populated then a separate plugin will be used to store the readings. As an example, to store the readings in the SQLite In Memory plugin the storage.json file would be

{
 "plugin": {
 "value": "sqlite",
 "description": "The main storage plugin to load"
 },
 "readingPlugin": {
 "value": "sqlitememory",
 "description": "The storage plugin to load for readings data. If blank the main storage plugin is used."
 },
 "threads": {
 "value": "1",
 "description": "The number of threads to run"
 },
 "managedStatus": {
 "value": "false",
 "description": "Control if FogLAMP should manage the storage provider"
 },
 "port": {
 "value": "0",
 "description": "The port to listen on"
 },
 "managementPort": {
 "value": "0",
 "description": "The management port to listen on."
 }
}

FogLAMP must be restarted for changes to the storage.json file to take effect.

In addition to the definition of the plugins to use, the storage.json file also has a number of other configuration options for the storage service.

	threads: The number of threads to use to accept incoming REST requests. This is normally set to 1, increasing the number of threads has minimal impact on performance in normal circumstances.

	managedStatus: This configuration option allows FogLAMP to manage the underlying storage system. If, for example you used a database server and you wished FogLAMP to start and stop that server as part of the FogLAMP start up and shut down procedure you would set this option to “true”.

	port: This option can be used to make the storage service listen on a fixed port. This is normally not required, but can be used for diagnostic purposes.

	managementPort: As with port above this can be used for diagnostic purposes to fix the management API port for the storage service.

Common Elements for Storage Plugins

In designing the Storage API and plugins, we have first of all considered that there may be a large number of use cases for data and metadata persistence, therefore we have designed a flexible architecture that poses very few limitations. In practice, this means that developers can build their own Storage plugin and they can rely on anything they want to use as persistent storage. They can use a memory structure, or even a pass-through library, a file, a message queue system, a time series database, a relational database, NoSQL or something else.

After having praised the flexibility of the Storage plugins, let’s provide guidelines about the basic functionality they should provide, bearing in mind that such functionality may not be relevant for some use cases.

	Metadata persistency: As mentioned before, one of the main reasons to use a Storage plugin is to safely store the configuration of the FogLAMP components. Since the configuration must survive to a system crash or reboot, it is fair to say that such information should be stored in one or more files or in a database system.

	Data buffering: The second most important feature of a Storage plugin is the ability to buffer (or store) data coming from the outside world, typically from the South microservices. In some cases this feature may not be necessary, since administrators may want to send data to other systems as soon as possible, using a North task of microservice. Even in situations where data can be sent up North instantaneously, you should consider these scenarios:

	FogLAMP may be installed in areas where the network is unreliable. The North plugins will provide the logic of retrying to gain connectivity and resending data when the connection has been lost in the middle of the transfer operations.

	North services may rely on the use of networks that provide time windows to operate.

	Historians and other systems may work better when data is transferred in blocks instead of a constant streaming.

	Data purging: Data may persist for the time needed by any specific use case, but it is pretty common that after a while (it can be seconds or minutes, but also day or months) data is no longer needed in FogLAMP. For this reason, the Storage plugin is able to purge data. Purging may be by time or by space usage, in conjunction with the fact that data may have been already transferred to other systems.

	Data backup/restore: Data, but especially metadata (i.e. configuration), can be backed up and stored safely on other systems. In case of crash and recovery, the same data may be restored into FogLAMP. FogLAMP provides a set of generic API to execute backup and restore operations.

Filter Plugins

Filter plugins provide a mechanism to alter the data stream as it flows
through a foglamp instance, filters may be applied in south or north
micro-services and may form a pipeline of multiple processing elements
through which the data flows. Filters applied in a south service will only
process data that is received by the south service, whilst filters placed
in the north will process all data that flows out of that north interface.

Filters may;

	augment data by adding static metadata or calculated values to the data

	remove data from the stream

	add data to the stream

	modify data in the stream

It should be noted that there are some alternatives to creating a filter
if you wish to make simple changes to the data stream. There are a number of
existing filters that provide a degree of programmability. These include
the expression filter which allows an arbitrary mathematical formula
to be applied to the data or the Python 3.5 filter which allows a
small include Python script to be applied to the data.

Filter plugins may be written in C++ or Python and have a very simple interface. The plugin mechanism and a subset of the API is common between all types of plugins including filters.

Configuration

Filters use the same configuration mechanism as the rest of FogLAMP,
using a JSON document to describe the configuration parameters. As with
any other plugin the structure is defined by the plugin and retrieve
by the plugin_info entry point. This is then matched with the database
content to pass the configured values to the plugin_init entry point.

C++ Filter Plugin API

The filter API consists of a small number of C function entry points,
these are called in a strict order and based on the same set of common
API entry points for all FogLAMP plugins.

Plugin Information

The plugin_info entry point is the first entry point that is called
in a filter plugin and returns the plugin information structure. This is
the exact same call that every FogLAMP plugin must support and is used to
determine the type of the plugin and the configuration category defaults
for the plugin.

A typical implementation of plugin_info would merely return a pointer
to a static PLUGIN_INFORMATION structure.

PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

Plugin Initialise

The plugin_init entry point is called after plugin_info has been called and before any data is passed to the filter. It is called at the phase where the service is setting up the filter pipeline and provides the filter with its configuration category that now contains the user supplied values and the destination to which the filter will send the output of the filter.

PLUGIN_HANDLE plugin_init(ConfigCategory* config,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output)
{
}

The config parameter is the configuration category with the user supplied
values inserted, the outHandle is a handle for the next filter in the
chain and the output is a function pointer to call to send the data
to the next filter in the chain. The outHandle and output arguments
should be stored for future use in the plugin_ingest when data is to
be forwarded within the pipeline.

The plugin_init function returns a handle that will be passed to all
subsequent plugin calls. This handle can be used to store state that
needs to be passed between calls. Typically the plugin_init call will
create a C++ class that implements the filter and return a point to the
instance as the handle. The instance can then be used to store the state
of the filter, including the output handle and callback that needs to
be used.

Filter classes can also be used to buffer data between calls to the
plugin_ingest entry point, allowing a filter to defer the processing
of the data until it has a sufficient quantity of buffered data available
to it.

Plugin Ingest

The plugin_ingest entry point is the workhorse of the filter, it is
called with sets of readings to process and then passes on the new set
of readings to the next filter in the pipeline. The process of passing on
the data to the next filter is via the OUTPUT_STREAM function pointer. A
filter does not have to output data each time it ingests data, it is free
to output no data or to output more or less data than it was called with.

void plugin_ingest(PLUGIN_HANDLE *handle,
 READINGSET *readingSet)
{
}

The number of readings that a filter is called with will depend on the
environment it is run in and what any filters earlier in the filter
pipeline have produced. A filter that requires a particular sample size
in order to process a result should therefore be prepared to buffer data
across multiple calls to plugin_ingest. Several examples of filters
that so this are available for reference.

The plugin_ingest call may send data onwards in the filter pipeline
by using the stored output and outHandle parameters passed to
plugin_init.

(*output)(outHandle, readings);

Plugin Reconfigure

As with other plugin types the filter may be reconfigured during its
lifetime. When a reconfiguration operation occurs the plugin_reconfigure
method will be called with the new configuration for the filter.

void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
}

Plugin Shutdown

As with other plugins a shutdown call exists which may be used by
the plugin to perform any cleanup that is required when the filter is
shut down.

void plugin_shutdown(PLUGIN_HANDLE *handle)
{
}

C++ Helper Class

It is expected that filters will be written as C++ classes, with the
plugin handle being used a a mechanism to store and pass the pointer to
the instance of the filter class. In order to make it easier to write
filters a base FogLAMPFilter class has been provided, it is recommended
that you derive your specific filter class from this base class in order
to simplify the implementation

class FogLAMPFilter {
 public:
 FogLAMPFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output);
 ~FogLAMPFilter() {};
 const std::string&
 getName() const { return m_name; };
 bool isEnabled() const { return m_enabled; };
 ConfigCategory& getConfig() { return m_config; };
 void disableFilter() { m_enabled = false; };
 void setConfig(const std::string& newConfig);
 public:
 OUTPUT_HANDLE* m_data;
 OUTPUT_STREAM m_func;
 protected:
 std::string m_name;
 ConfigCategory m_config;
 bool m_enabled;
};

C++ Filter Example

The following example is a simple data processing example. It applies the log() function to numeric data in the data stream

Plugin Interface

Most plugins written in C++ have a source file that encapsulates the C API to the plugin, this is traditionally called plugin.cpp. The example plugin follows this model with the content of plugin.cpp shown below.

The first section includes the filter class that is the actual implementation of the filter logic and defines the JSON configuration category. This uses the QUOTE macro in order to make the JSON definition more readable.

/*
 * FogLAMP "log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */

#include <logFilter.h>
#include <version.h>

#define FILTER_NAME "log"
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "Log filter plugin",
 "type" : "string",
 "default" : FILTER_NAME,
 "readonly": "true"
 },
 "enable": {
 "description": "A switch that can be used to enable or disable execution of the log filter.",
 "type": "boolean",
 "displayName": "Enabled",
 "default": "false"
 },
 "match" : {
 "description" : "An optional regular expression to match in the asset name.",
 "type": "string",
 "default": "",
 "order": "1",
 "displayName": "Asset filter"}
 });

using namespace std;

We then define the plugin information contents that will be returned by the plugin_info call.

/**
 * The Filter plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 FILTER_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_FILTER, // Type
 "1.0.0", // Interface version
 default_config // Default plugin configuration
};

The final section of this file consists of the entry points themselves
and the implementation. The majority of this consist of calls to the
LogFilter class that in this case implements the logic of the filter.

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle.
 * We merely create an instance of our LogFilter class
 *
 * @param config The configuration category for the filter
 * @param outHandle A handle that will be passed to the output stream
 * @param output The output stream (function pointer) to which data is passed
 * @return An opaque handle that is used in all subsequent calls to the plugin
 */
PLUGIN_HANDLE plugin_init(ConfigCategory* config,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output)
{
 LogFilter *log = new LogFilter(FILTER_NAME,
 *config,
 outHandle,
 output);

 return (PLUGIN_HANDLE)log;
}

/**
 * Ingest a set of readings into the plugin for processing
 *
 * @param handle The plugin handle returned from plugin_init
 * @param readingSet The readings to process
 */
void plugin_ingest(PLUGIN_HANDLE *handle,
 READINGSET *readingSet)
{
 LogFilter *log = (LogFilter *) handle;
 log->ingest(readingSet);
}

/**
 * Plugin reconfiguration method
 *
 * @param handle The plugin handle
 * @param newConfig The updated configuration
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
 LogFilter *log = (LogFilter *)handle;
 log->reconfigure(newConfig);
}

/**
 * Call the shutdown method in the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 LogFilter *log = (LogFilter *) handle;
 delete log;
}

// End of extern "C"
};

Filter Class

Although it is not mandatory it is good practice to encapsulate the filter login in a class, these classes are derived from the FogLAMPFilter class

#ifndef _LOG_FILTER_H
#define _LOG_FILTER_H
/*
 * FogLAMP "Log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */
#include <filter.h>
#include <reading_set.h>
#include <config_category.h>
#include <string>
#include <logger.h>
#include <mutex>
#include <regex>
#include <math.h>

/**
 * Convert the incoming data to use a logarithmic scale
 */
class LogFilter : public FogLAMPFilter {
 public:
 LogFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output);
 ~LogFilter();
 void ingest(READINGSET *readingSet);
 void reconfigure(const std::string& newConfig);
 private:
 void handleConfig(ConfigCategory& config);
 std::string m_match;
 std::regex *m_regex;
 std::mutex m_configMutex;
};

#endif

Filter Class Implementation

The following is the code that implements the filter logic

/*
 * FogLAMP "Log" filter plugin.
 *
 * Copyright (c) 2020 Dianomic Systems
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Mark Riddoch
 */
#include <logFilter.h>

using namespace std;

/**
 * Constructor for the LogFilter.
 *
 * We call the constructor of the base class and handle the initial
 * configuration of the filter.
 *
 * @param filterName The name of the filter
 * @param filterConfig The configuration category for this filter
 * @param outHandle The handle of the next filter in the chain
 * @param output A function pointer to call to output data to the next filter
 */
LogFilter::LogFilter(const std::string& filterName,
 ConfigCategory& filterConfig,
 OUTPUT_HANDLE *outHandle,
 OUTPUT_STREAM output) : m_regex(NULL),
 FogLAMPFilter(filterName, filterConfig, outHandle, output)
{
 handleConfig(filterConfig);
}

/**
 * Destructor for this filter class
 */
LogFilter::~LogFilter()
{
 if (m_regex)
 delete m_regex;
}

/**
 * The actual filtering code
 *
 * @param readingSet The reading data to filter
 */
void
LogFilter::ingest(READINGSET *readingSet)
{
 lock_guard<mutex> guard(m_configMutex);

 if (isEnabled()) // Filter enable, process the readings
 {
 const vector<Reading *>& readings = ((ReadingSet *)readingSet)->getAllReadings();
 for (vector<Reading *>::const_iterator elem = readings.begin();
 elem != readings.end(); ++elem)
 {
 // If we set a matching regex then compare to the name of this asset
 if (!m_match.empty())
 {
 string asset = (*elem)->getAssetName();
 if (!regex_match(asset, *m_regex))
 {
 continue;
 }
 }

 // We are modifying this asset so put an entry in the asset tracker
 AssetTracker::getAssetTracker()->addAssetTrackingTuple(getName(), (*elem)->getAssetName(), string("Filter"));

 // Get a reading DataPoints
 const vector<Datapoint *>& dataPoints = (*elem)->getReadingData();

 // Iterate over the datapoints
 for (vector<Datapoint *>::const_iterator it = dataPoints.begin(); it != dataPoints.end(); ++it)
 {
 // Get the reference to a DataPointValue
 DatapointValue& value = (*it)->getData();

 /*
 * Deal with the T_INTEGER and T_FLOAT types.
 * Try to preserve the type if possible but
 * if a floating point log function is applied
 * then T_INTEGER values will turn into T_FLOAT.
 * If the value is zero we do not apply the log function
 */
 if (value.getType() == DatapointValue::T_INTEGER)
 {
 long ival = value.toInt();
 if (ival != 0)
 {
 double newValue = log((double)ival);
 value.setValue(newValue);
 }
 }
 else if (value.getType() == DatapointValue::T_FLOAT)
 {
 double dval = value.toDouble();
 if (dval != 0.0)
 {
 value.setValue(log(dval));
 }
 }
 else
 {
 // do nothing for other types
 }
 }
 }
 }

 // Pass on all readings in this case
 (*m_func)(m_data, readingSet);
}

/**
 * Reconfiguration entry point to the filter.
 *
 * This method runs holding the configMutex to prevent
 * ingest using the regex class that may be destroyed by this
 * call.
 *
 * Pass the configuration to the base FilterPlugin class and
 * then call the private method to handle the filter specific
 * configuration.
 *
 * @param newConfig The JSON of the new configuration
 */
void
LogFilter::reconfigure(const std::string& newConfig)
{
 lock_guard<mutex> guard(m_configMutex);
 setConfig(newConfig); // Pass the configuration to the base class
 handleConfig(m_config);
}

/**
 * Handle the filter specific configuration. In this case
 * it is just the single item "match" that is a regex
 * expression
 *
 * @param config The configuration category
 */
void
LogFilter::handleConfig(ConfigCategory& config)
{
 if (config.itemExists("match"))
 {
 m_match = config.getValue("match");
 if (m_regex)
 delete m_regex;
 m_regex = new regex(m_match);
 }
}

Python Filter API

Filters may also be written in Python, the API is very similar to that of a C++ filter and consists of the same set of entry points.

Plugin Information

As with C++ filters this is the first entry point called, it returns a Python dictionary that describes the filter.

def plugin_info():
 """ Returns information about the plugin
 Args:
 Returns:
 dict: plugin information
 Raises:
 """

Plugin Initialisation

The plugin_init call is used to pass the resolved configuration to the
plugin and also pass in the handle of the next filter in the pipeline
and a callback that should be called with the output data of the filter.

def plugin_init(config, ingest_ref, callback):
 """ Initialise the plugin
 Args:
 config: JSON configuration document for the Filter plugin configuration category
 ingest_ref:
 callback:
 Returns:
 data: JSON object to be used in future calls to the plugin
 Raises:
 """

Plugin Ingestion

The plugin_ingest method is used to pass data into the plugin, the plugin will then process that data and call the callback that was passed into the plugin_init entry point with the ingest_ref handle and the data to send along the filter pipeline.

def plugin_ingest(handle, data):
 """ Modify readings data and pass it onward

 Args:
 handle: handle returned by the plugin initialisation call
 data: readings data
 """

The data is arranged as an array of Python dictionaries, each of which is a Reading. Typically the data can be processed by traversing the array

for elem in data:
 process(elem)

Plugin Reconfigure

The plugin_reconfigure entry point is called whenever a configuration change occurs for the filters configuration category.

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 """

Plugin Shutdown

Called when the plugin is to be shutdown to allow it to perform any cleanup operations.

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 plugin shutdown
 """

Python Filter Example

The following is an example of a Python filter that calculates an exponential moving average.

-*- coding: utf-8 -*-

FogLAMP_BEGIN
See: http://foglamp.readthedocs.io/
FogLAMP_END

""" Module for EMA filter plugin

Generate Exponential Moving Average
The rate value (x) allows to include x% of current value
and (100-x)% of history
A datapoint called 'ema' is added to each reading being filtered
"""

import time
import copy
import logging

from foglamp.common import logger
import filter_ingest

__author__ = "Massimiliano Pinto"
__copyright__ = "Copyright (c) 2020 Dianomic Systems"
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_LOGGER = logger.setup(__name__, level = logging.WARN)

Filter specific objects
the_callback = None
the_ingest_ref = None

latest ema value
latest = None
rate value
rate = None
datapoint name
datapoint = None
plugin shutdown indicator
shutdown_in_progress = False

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Exponential Moving Average filter plugin',
 'type': 'string',
 'default': 'ema',
 'readonly': 'true'
 },
 'enable': {
 'description': 'Enable ema plugin',
 'type': 'boolean',
 'default': 'false',
 'displayName': 'Enabled',
 'order': "3"
 },
 'rate': {
 'description': 'Rate value: include % of current value',
 'type': 'float',
 'default': '0.07',
 'displayName': 'Rate',
 'order': "2"
 },
 'datapoint': {
 'description': 'Datapoint name for calculated ema value',
 'type': 'string',
 'default': 'ema',
 'displayName': 'EMA datapoint',
 'order': "1"
 }
}

def compute_ema(reading):
 """ Compute EMA

 Args:
 A reading data
 """
 global rate, latest, datapoint
 for attribute in list(reading):
 if not latest:
 latest = reading[attribute]
 latest = reading[attribute] * rate + latest * (1 - rate)
 reading[datapoint] = latest

def plugin_info():
 """ Returns information about the plugin
 Args:
 Returns:
 dict: plugin information
 Raises:
 """
 return {
 'name': 'ema',
 'version': '1.8.2',
 'mode': "none",
 'type': 'filter',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config, ingest_ref, callback):
 """ Initialise the plugin
 Args:
 config: JSON configuration document for the Filter plugin configuration category
 ingest_ref:
 callback:
 Returns:
 data: JSON object to be used in future calls to the plugin
 Raises:
 """
 data = copy.deepcopy(config)

 global the_callback, the_ingest_ref, rate, datapoint

 the_callback = callback
 the_ingest_ref = ingest_ref
 rate = float(config['rate']['value'])
 datapoint = config['datapoint']['value']

 _LOGGER.debug("plugin_init for filter EMA called")

 return data

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 """
 global rate, datapoint
 rate = float(new_config['rate']['value'])
 datapoint = new_config['datapoint']['value']
 _LOGGER.debug("Old config for ema plugin {} \n new config {}".format(handle, new_config))
 new_handle = copy.deepcopy(new_config)

 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 plugin shutdown
 """
 global shutdown_in_progress, the_callback, the_ingest_ref, rate, latest, datapoint
 shutdown_in_progress = True
 time.sleep(1)
 the_callback = None
 the_ingest_ref = None
 rate = None
 latest = None
 datapoint = None

 _LOGGER.info('filter ema plugin shutdown.')

def plugin_ingest(handle, data):
 """ Modify readings data and pass it onward

 Args:
 handle: handle returned by the plugin initialisation call
 data: readings data
 """
 global shutdown_in_progress, the_callback, the_ingest_ref
 if shutdown_in_progress:
 return

 if handle['enable']['value'] == 'false':
 # Filter not enabled, just pass data onwards
 filter_ingest.filter_ingest_callback(the_callback, the_ingest_ref, data)
 return

 # Filter is enabled: compute EMA for each reading
 for elem in data:
 compute_ema(elem['readings'])

 # Pass data onwards
 filter_ingest.filter_ingest_callback(the_callback, the_ingest_ref, data)

 _LOGGER.debug("ema filter_ingest done")

Notification Delivery Plugins

Notification delivery plugins are used by the notification system to
send a notification to some other system or device. They are the transport
that allows the event to be notified to that other system or device.

Notification delivery plugins may be written in C or C++ and have a very
simple interface. The plugin mechanism and a subset of the API is common
between all types of plugins including filters. This documentation is based
on the MQTT notification delivery source code. The MQTT delivery plugin sends MQTT messages to a configurable MQTT topic
when a notification is triggered and cleared.

Configuration

Notification Delivery plugins use the same configuration mechanism as the rest of
FogLAMP, using a JSON document to describe the configuration parameters. As
with any other plugin the structure is defined by the plugin and retrieve
by the plugin_info entry point. This is then matched with the database
content to pass the configured values to the plugin_init entry point.

Notification Delivery Plugin API

The notification delivery plugin API consists of a small number of C
function entry points, these are called in a strict order and based on
the same set of common API entry points for all FogLAMP plugins.

Plugin Information

The plugin_info entry point is the first entry point that is called
in a notification delivery plugin and returns the plugin information
structure. This is the exact same call that every FogLAMP plugin
must support and is used to determine the type of the plugin and the
configuration category defaults for the plugin.

A typical implementation of plugin_info would merely return a pointer
to a static PLUGIN_INFORMATION structure.

PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

Plugin Initialise

The second call that is made to the plugin is the plugin_init call, that is used to retrieve a handle on the plugin instance and to configure the plugin.

PLUGIN_HANDLE plugin_init(ConfigCategory* config)
{
 MQTT *mqtt = new MQTT(config);
 return (PLUGIN_HANDLE)mqtt;
}

The config parameter is the configuration category with the user supplied
values inserted, these values are used to configure the behavior of the
plugin. In the case of our MQTT example we use this to call the constructor
of our MQTT class.

/**
 * Construct a MQTT notification plugin
 *
 * @param category The configuration of the plugin
 */
MQTT::MQTT(ConfigCategory *category)
{
 if (category->itemExists("broker"))
 m_broker = category->getValue("broker");
 if (category->itemExists("topic"))
 m_topic = category->getValue("topic");
 if (category->itemExists("trigger_payload"))
 m_trigger = category->getValue("trigger_payload");
 if (category->itemExists("clear_payload"))
 m_clear = category->getValue("clear_payload");
}

This constructor merely stores values out of the configuration category
as private member variables of the MQTT class.

We return the pointer to our MQTT class as the handle for the plugin. This
allows subsequent calls to the plugin to reference the instance created
by the plugin_init call.

Plugin Delivery

This is the API call made whenever the plugin needs to send a triggered or cleared notification state. It may be called multiple times within the lifetime of a plugin.

bool plugin_deliver(PLUGIN_HANDLE handle,
 const std::string& deliveryName,
 const std::string& notificationName,
 const std::string& triggerReason,
 const std::string& message)
{
 MQTT *mqtt = (MQTT *)handle;
 return mqtt->notify(notificationName, triggerReason, message);
}

The delivery call is passed the handle, which gives us the MQTT class
instance on this case, the name of the notification, a trigger reason,
which is a JSON document and a message. The trigger reason JSON document
contains information about why the delivery call was made, including the
triggered or cleared status, the timestamp of the reading that caused
the notification to trigger and the name of the asset or assets involved
in the notification rule that triggered this delivery event.

{
 "reason": "triggered",
 "asset": ["sinusoid"],
 "timestamp": "2020-11-18 11:52:33.960530+00:00"
}

The return from the plugin_deliver entry point is a boolean that
indicates if the delivery succeeded or not.

In the case of our MQTT example we call the notify method of the class,
this then interacts with the MQTT broker.

/**
 * Send a notification via MQTT broker
 *
 * @param notificationName The name of this notification
 * @param triggerReason Why the notification is being sent
 * @param message The message to send
 */
bool MQTT::notify(const string& notificationName, const string& triggerReason, const string& message)
{
string payload = m_trigger;
MQTTClient client;

 lock_guard<mutex> guard(m_mutex);

 // Parse the JSON that represents the reason data
 Document doc;
 doc.Parse(triggerReason.c_str());
 if (!doc.HasParseError() && doc.HasMember("reason"))
 {
 if (!strcmp(doc["reason"].GetString(), "cleared"))
 payload = m_clear;
 }

 // Connect to the MQTT broker
 MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
 MQTTClient_message pubmsg = MQTTClient_message_initializer;
 MQTTClient_deliveryToken token;
 int rc;

 if ((rc = MQTTClient_create(&client, m_broker.c_str(), CLIENTID,
 MQTTCLIENT_PERSISTENCE_NONE, NULL)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to create client, return code %d\n", rc);
 return false;
 }

 conn_opts.keepAliveInterval = 20;
 conn_opts.cleansession = 1;
 if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to connect, return code %d\n", rc);
 return false;
 }

 // Construct the payload
 pubmsg.payload = (void *)payload.c_str();
 pubmsg.payloadlen = payload.length();
 pubmsg.qos = 1;
 pubmsg.retained = 0;

 // Publish the message
 if ((rc = MQTTClient_publishMessage(client, m_topic.c_str(), &pubmsg, &token)) != MQTTCLIENT_SUCCESS)
 {
 Logger::getLogger()->error("Failed to publish message, return code %d\n", rc);
 return false;
 }

 // Wait for completion and disconnect
 rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
 if ((rc = MQTTClient_disconnect(client, 10000)) != MQTTCLIENT_SUCCESS)
 Logger::getLogger()->error("Failed to disconnect, return code %d\n", rc);
 MQTTClient_destroy(&client);
 return true;
}

Plugin Reconfigure

As with other plugin types the notification delivery plugin may be
reconfigured during its lifetime. When a reconfiguration operation occurs
the plugin_reconfigure method will be called with the new configuration
for the plugin.

void plugin_reconfigure(PLUGIN_HANDLE *handle, const std::string& newConfig)
{
 MQTT *mqtt = (MQTT *)handle;
 mqtt->reconfigure(newConfig);
 return;
}

In the case of our MQTT example we call the reconfigure method of our
MQTT class. In this method the new values are copied into the local
member variables of the instance.

/**
 * Reconfigure the MQTT delivery plugin
 *
 * @param newConfig The new configuration
 */
void MQTT::reconfigure(const string& newConfig)
{
 ConfigCategory category("new", newConfig);
 lock_guard<mutex> guard(m_mutex);
 m_broker = category.getValue("broker");
 m_topic = category.getValue("topic");
 m_trigger = category.getValue("trigger_payload");
 m_clear = category.getValue("clear_payload");
}

The mutex is used here to prevent the plugin reconfiguration occurring
when we are delivering a notification. The same mutex is held in the
notify method of the MQTT class.

Plugin Shutdown

As with other plugins a shutdown call exists which may be used by
the plugin to perform any cleanup that is required when the plugin is
shut down.

void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 MQTT *mqtt = (MQTT *)handle;
 delete mqtt;
}

In the case of our MQTT example we merely destroy the instance of the
MQTT class and allow the destructor of that class to do any cleanup that
is required. In the case of this example there is no cleanup required.

Testing Your Plugin

The first step in testing your new plugin is to put the plugin in the
location in which your FogLAMP system will be loading it from. The exact
location depends on the way your installed you FogLAMP system and the
type of plugin.

If your FogLAMP system was installed from a package and you used the
default installation path, then your plugin must be stored under the
directory /usr/local/foglamp. If you installed FogLAMP in a nonstandard
location or your have built it from the source code, then the plugin
should be stored under the directory $FOGLAMP_ROOT.

A C/C++ plugin or a hybrid plugin should be placed in the directory
plugins/<type>/<plugin name> under the installed directory
described above. Where <type> is one of south, filter, north,
notificationRule or notificationDelivery. And <plugin name> is
the name you gave your plugin.

A south plugin written in C/C++ and called DHT11, for a system
installed from a package, would be installed in a directory called
/usr/local/foglamp/plugins/south/DHT11. Within that directory FogLAMP
would expect to find a file called libDHT11.so.

A south hybrid plugin called MD1421, for a development system built from
source would be installed in ${FOGLAMP_ROOT}/plugins/south/MD1421. In
this directory a JSON file called MD1421.json should exist, this is
what the system will read to create the plugin.

A Python plugin should be installed in the directory
python/foglamp/plugins/<plugin type>/<plugin name> under the installed
directory described above. Where <type> is one of south, filter,
north, notificationRule or notificationDelivery. And <plugin name>
is the name you gave your plugin.

A Python filter plugin call normalise, on a system installed from
a package in the default location should be copied into a directory
/usr/local/foglamp/python/foglamp/plugins/filter/normalise. Within
this directory should be a file called normalise.py and an empty file
called __init__.py.

Initial Testing

After you have copied your plugin into the correct location
you can test if FogLAMP is able to see it by running the API call
/foglamp/plugins/installed. This will list all the installed plugins
and their versions.

$ curl http://localhost:8081/foglamp/plugins/installed | jq
{
 "plugins": [
 {
 "name": "pi_server",
 "type": "north",
 "description": "PI Server North Plugin",
 "version": "1.0.0",
 "installedDirectory": "north/pi_server",
 "packageName": ""
 },
 {
 "name": "ocs",
 "type": "north",
 "description": "OCS (OSIsoft Cloud Services) North Plugin",
 "version": "1.0.0",
 "installedDirectory": "north/ocs",
 "packageName": ""
 },
 {
 "name": "http_north",
 "type": "north",
 "description": "HTTP North Plugin",
 "version": "1.8.1",
 "installedDirectory": "north/http_north",
 "packageName": "foglamp-north-http-north"
 },
 {
 "name": "GCP",
 "type": "north",
 "description": "Google Cloud Platform IoT-Core",
 "version": "1.8.1",
 "installedDirectory": "north/GCP",
 "packageName": "foglamp-north-gcp"
 },
...
}

Note, in the above example the jq program has been used to format the
returned JSON and the output has been truncated for brevity.

If your plugin does not appear it may be because there was a problem
loading it or because the plugin_info call returned a bad value. Examine
the syslog file to see if there are any errors recorded during the above
API call.

C/C++ Common Faults

Common faults for C/C++ plugins are that a symbol could not be resolved
when the plugin was loaded or the JSON for the default configuration
is malformed.

There is a utility called get_plugin_info that is used by Python code
to call the C plugin_info call, this can be used to ascertain the
cause of some problems. It should return the default configuration of
your plugin and will verify that your plugin has no undefined symbols.

The location of get_plugin_info will depend on the type of
installation you have. If you have built from source then it can
be found in ./cmake_build/C/plugins/utils/get_plugin_info. If you
have installed a package, or run make install, you can find it in
/usr/local/foglamp/extras/C/get_plugin_info.

The utility is passed the library file of your plugin as its first argument
and the function to call, usually plugin_info.

$ get_plugin_info plugins/north/GCP/libGCP.so plugin_info
{"name": "GCP", "version": "1.8.1", "type": "north", "interface": "1.0.0", "flag": 0, "config": { "plugin" : { "description" : "Google Cloud Platform IoT-Core", "type" : "string", "default" : "GCP", "readonly" : "true" }, "project_id" : { "description" : "The GCP IoT Core Project ID", "type" : "string", "default" : "", "order" : "1", "displayName" : "Project ID" }, "region" : { "description" : "The GCP Region", "type" : "enumeration", "options" : ["us-central1", "europe-west1", "asia-east1"], "default" : "us-central1", "order" : "2", "displayName" : "The GCP Region" }, "registry_id" : { "description" : "The Registry ID of the GCP Project", "type" : "string", "default" : "", "order" : "3", "displayName" : "Registry ID" }, "device_id" : { "description" : "Device ID within GCP IoT Core", "type" : "string", "default" : "", "order" : "4", "displayName" : "Device ID" }, "key" : { "description" : "Name of the key file to use", "type" : "string", "default" : "", "order" : "5", "displayName" : "Key Name" }, "algorithm" : { "description" : "JWT algorithm", "type" : "enumeration", "options" : ["ES256", "RS256"], "default" : "RS256", "order" : "6", "displayName" : "JWT Algorithm" }, "source": { "description" : "The source of data to send", "type" : "enumeration", "default" : "readings", "order" : "8", "displayName" : "Data Source", "options" : ["readings", "statistics"] } }}

If there is an undefined symbol you will get an error from this
utility. You can also check the validity of your JSON configuration by
piping the output to a program such as jq.

Running Under a Debugger

If you have a C/C++ plugin that crashes you may want to run the plugin under a debugger. To build with debug symbols use the CMake option -DCMAKE_BUILD_TYPE=Debug when you create the Makefile.

Running a Service Under the Debugger

$ cmake -DCMAKE_BUILD_TYPE=Debug ..

The easiest approach to run under a debugger is

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by FogLAMP

	Use the foglamp status script to find the arguments to pass the service

$ scripts/foglamp status
FogLAMP v1.8.2 running.
FogLAMP Uptime: 1451 seconds.
FogLAMP records: 200889 read, 200740 sent, 120962 purged.
FogLAMP does not require authentication.
=== FogLAMP services:
foglamp.services.core
foglamp.services.storage --address=0.0.0.0 --port=39821
foglamp.services.south --port=39821 --address=127.0.0.1 --name=AX8
foglamp.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== FogLAMP tasks:

	Note the –port= and –address= arguments

	Set your LD_LIBRARY_PATH. This is normally done in the script that launches FogLAMP but will need to be run as a manual step when running under the debugger.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/foglamp/lib

If you built from source rather than installing a package you will need to include the libraries you built

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${FOGLAMP_ROOT}/cmake_build/C/lib

	Load the service you wish to use to run your plugin, e..g a south service, under the debugger

$ gdb services/foglamp.services.south

	Run the service passing the –port= and –address= arguments you noted above and add -d and –name= with the name of your service.

(gdb) run --port=39821 --address=127.0.0.1 --name=ServiceName -d

Where ServiceName is the name you gave your service

	You can now use the debugger in the way you normally would to find any issues.

Running a Task Under the Debugger

Running a task under the debugger is much the same as running a service,
you will first need to find the management port and address of the core
management service. Create the task, e.g. a north sending process in
the same way as you normally would and disable it. You will also need
to set your LD_LIBRARY_PATH as with running a service under the debugger.

If you are using a plugin with a task, such as the north sending process
task, then the command to use to start the debugger is

$ gdb tasks/sending_process

Running the Storage Service Under the Debugger

Running the storage service under the debugger is more difficult as you can not start the storage service after FogLAMP has started, the startup of the storage service is coordinated by the core due to the nature of how configuration is stored. It is possible however to attach a debugger to a running storage service.

	Run a command to find the process ID of the storage service

$ ps aux | grep foglamp.services.storage
foglamp 23318 0.0 0.3 270848 12388 ? Ssl 10:00 0:01 /usr/local/foglamp/services/foglamp.services.storage --address=0.0.0.0 --port=33761
foglamp 31033 0.0 0.0 13136 1084 pts/1 S+ 10:37 0:00 grep --color=auto foglamp.services.storage

	Use the process ID of the foglamp service as an argument to gdb. Note you will need to run gdb as root on some systems

$ sudo gdb /usr/local/foglamp/services/foglamp.services.storage 23318
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from services/foglamp.services.storage...done.
Attaching to program: /usr/local/foglamp/services/foglamp.services.storage, process 23318
[New LWP 23320]
[New LWP 23321]
[New LWP 23322]
[New LWP 23330]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
0x00007f47a3e05d2d in __GI___pthread_timedjoin_ex (threadid=139945627997952, thread_return=0x0, abstime=0x0,
 block=<optimized out>) at pthread_join_common.c:89
89 pthread_join_common.c: No such file or directory.
(gdb)

	You can now use gdb to set break points etc and debug the storage service and plugins.

If you are debugger a plugin that crashes the system when readings are
processed you should disable the south services until you have connected
the debugger to the storage system. If you have a system that is setup
and crashes, use the –safe-mode flag to the startup of FogLAMP in order
to disable all processes and services. This will allow you to disable
services or to run a particular service manually.

Using strace

You can also use a similar approach to that of running gdb to use the strace command to trace system calls and signals

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by FogLAMP

	Use the foglamp status script to find the arguments to pass the service

$ scripts/foglamp status
FogLAMP v1.8.2 running.
FogLAMP Uptime: 1451 seconds.
FogLAMP records: 200889 read, 200740 sent, 120962 purged.
FogLAMP does not require authentication.
=== FogLAMP services:
foglamp.services.core
foglamp.services.storage --address=0.0.0.0 --port=39821
foglamp.services.south --port=39821 --address=127.0.0.1 --name=AX8
foglamp.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== FogLAMP tasks:

	Note the –port= and –address= arguments

	Run strace with the service adding the same set of arguments you used in gdb when running the service

$ strace services/foglamp.services.south --port=39821 --address=127.0.0.1 --name=ServiceName -d

Where ServiceName is the name you gave your service

Memory Leaks and Corruptions

The same approach can be used to make use of the valgrind command to find memory corruption and leak issues in your plugin

	Create the service that uses your plugin, say a south service and name that service as you normally would.

	Disable that service from being started by FogLAMP

	Use the foglamp status script to find the arguments to pass the service

$ scripts/foglamp status
FogLAMP v1.8.2 running.
FogLAMP Uptime: 1451 seconds.
FogLAMP records: 200889 read, 200740 sent, 120962 purged.
FogLAMP does not require authentication.
=== FogLAMP services:
foglamp.services.core
foglamp.services.storage --address=0.0.0.0 --port=39821
foglamp.services.south --port=39821 --address=127.0.0.1 --name=AX8
foglamp.services.south --port=39821 --address=127.0.0.1 --name=Sine
=== FogLAMP tasks:

	Note the –port= and –address= arguments

	Run strace with the service adding the same set of arguments you used in gdb when running the service

$ valgrind --leak-check=full services/foglamp.services.south --port=39821 --address=127.0.0.1 --name=ServiceName -d

Where ServiceName is the name you gave your service

Python Plugin Info

It is also possible to test the loading and validity of the plugin_info call in a Python plugin.

	From the /usr/include/foglamp or ${FOGLAMP_ROOT} directory run the command

python3 -c 'from foglamp.plugins.south.<name>.<name> import plugin_info; print(plugin_info())'

Where <name> is the name of your plugin.

python3 -c 'from foglamp.plugins.south.sinusoid.sinusoid import plugin_info; print(plugin_info())'
{'name': 'Sinusoid Poll plugin', 'version': '1.8.1', 'mode': 'poll', 'type': 'south', 'interface': '1.0', 'config': {'plugin': {'description': 'Sinusoid Poll Plugin which implements sine wave with data points', 'type': 'string', 'default': 'sinusoid', 'readonly': 'true'}, 'assetName': {'description': 'Name of Asset', 'type': 'string', 'default': 'sinusoid', 'displayName': 'Asset name', 'mandatory': 'true'}}}

This allows you to confirm the plugin can be loaded and the plugin_info entry point can be called.

You can also check your default configuration. Although in Python this is usually harder to get wrong.

$ python3 -c 'from foglamp.plugins.south.sinusoid.sinusoid import plugin_info; print(plugin_info()["config"])'
{'plugin': {'description': 'Sinusoid Poll Plugin which implements sine wave with data points', 'type': 'string', 'default': 'sinusoid', 'readonly': 'true'}, 'assetName': {'description': 'Name of Asset', 'type': 'string', 'default': 'sinusoid', 'displayName': 'Asset name', 'mandatory': 'true'}}

REST API Developers Guide

	The FogLAMP REST API
	Introducing the FogLAMP REST API
	Port Usage

	Infrastructure

	Administration API Reference
	Audit Trail
	audit
	GET Audit Entries

	POST Audit Entries

	Configuration Management
	category
	GET categor(ies)

	GET category

	GET category item

	PUT category item

	DELETE category item

	POST category

	Task Management
	task
	GET task

	GET task latest

	GET task by ID

	Cancel task by ID

	Other Administrative API calls
	ping
	GET ping

	statistics
	GET statistics

	GET statistics/history

	User API Reference
	Browsing Assets
	asset
	GET all assets

	GET asset readings

	GET asset reading

	GET asset reading summary

	GET timed average asset reading

The FogLAMP REST API

Users, administrators and applications interact with FogLAMP via a REST API. This section presents a full reference of the API.

Note

The FogLAMP REST API should not be confused with the internal REST API used by FogLAMP tasks and microservices to communicate with each other.

Introducing the FogLAMP REST API

The REST API is the route into the FogLAMP appliance, it provides all user and program interaction to configure, monitor and manage the FogLAMP system. A separate specification will define the contents of the API, in summary however it is designed to allow for:

	The complete configuration of the FogLAMP appliance

	Access to monitoring statistics for the FogLAMP appliance

	User and role management for access to the API

	Access to the data buffer contents

Port Usage

In general FogLAMP components use dynamic port allocation to determine which port to use, the admin API is however an exception to this rule. The Admin API port has to be known to end-users and any user interface or management system that uses it, therefore the port on which the admin API listens must be consistent and fixed between invocations. This does not mean however that it can not be changed by the user. The user must have the option to define the port to use by the admin API to listen on. To achieve this the port will be stored in the configuration data for the admin API, using the configuration category AdminAPI, see Configuration. Administrators who have access to the appliance can find information regarding the port and the protocol to used (i.e. HTTP or HTTPS) in the pid file stored in $FOGLAMP_DATA/var/run/:

$ cat data/var/run/foglamp.core.pid
{ "adminAPI" : { "protocol" : "HTTP",
 "port" : 8081,
 "addresses" : ["0.0.0.0"] },
 "processID" : 3585 }
$

FogLAMP is shipped with a default port for the admin API to use, however the user is free to change this after installation. This can be done by first connecting to the port defined as the default and then modifying the port using the admin API. FogLAMP should then be restarted to make use of this new port.

Infrastructure

There are two REST API’s that allow external access to FogLAMP, the Administration API and the User API. The User API is intended to allow access to the data in the FogLAMP storage layer which buffers sensor readings, and it is not part of this current version.

The Administration API is the first API is concerned with all aspects of managing and monitoring the FogLAMP appliance. This API is used for all configuration operations that occur beyond basic installation.

Administration API Reference

This section presents the list of administrative API methods in alphabetical order.

Audit Trail

The audit trail API is used to interact with the audit trail log tables in the storage microservice. In FogLAMP, log information is stored in the system log where the microservice is hosted. All the relevant information used for auditing are instead stored inside FogLAMP and they are accessible through the Admin REST API. The API allows the reading but also the addition of extra audit logs, as if such logs are created within the system.

audit

The audit methods implement the audit trail, they are used to create and retrieve audit logs.

GET Audit Entries

GET /foglamp/audit - return a list of audit trail entries sorted with most recent first.

Request Parameters

	limit - limit the number of audit entries returned to the number specified

	skip - skip the first n entries in the audit table, used with limit to implement paged interfaces

	source - filter the audit entries to be only those from the specified source

	severity - filter the audit entries to only those of the specified severity

Response Payload

The response payload is an array of JSON objects with the audit trail entries.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The timestamp when the audit trail

item was written.

	2018-04-16 14:33:18.215

	source

	string

	The source of the audit trail entry.

	CoAP

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Sensor readings discarded due to malformed payload” }

Example

$ curl -s http://localhost:8081/foglamp/audit?limit=2
{ "totalCount" : 24,
 "audit" : [{ "timestamp" : "2018-02-25 18:58:07.748",
 "source" : "SRVRG",
 "details" : { "name" : "COAP" },
 "severity" : "INFORMATION" },
 { "timestamp" : "2018-02-25 18:58:07.742",
 "source" : "SRVRG",
 "details" : { "name" : "HTTP_SOUTH" },
 "severity" : "INFORMATION" },
 { "timestamp" : "2018-02-25 18:58:07.390",
 "source" : "START",
 "details" : {},
 "severity" : "INFORMATION" }
]
}
$ curl -s http://localhost:8081/foglamp/audit?source=SRVUN&limit=1
{ "totalCount" : 4,
 "audit" : [{ "timestamp" : "2018-02-25 05:22:11.053",
 "source" : "SRVUN",
 "details" : { "name": "COAP" },
 "severity" : "INFORMATION" }
]
}
$

POST Audit Entries

POST /foglamp/audit - create a new audit trail entry.

The purpose of the create method on an audit trail entry is to allow a user interface or an application that is using the FogLAMP API to utilize the FogLAMP audit trail and notification mechanism to raise user defined audit trail entries.

Request Payload

The request payload is a JSON object with the audit trail entry minus the timestamp.

	Name

	Type

	Description

	Example

	source

	string

	The source of the audit trail entry.

	LOGGN

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Internal System Error” }

Response Payload

The response payload is the newly created audit trail entry.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The timestamp when the audit trail

item was written.

	2018-04-16 14:33:18.215

	source

	string

	The source of the audit trail entry.

	LOGGN

	severity

	string

	The severity of the event that triggered

the audit trail entry to be written.

This will be one of SUCCESS, FAILURE,

WARNING or INFORMATION.

	FAILURE

	details

	object

	A JSON object that describes the detail

of the audit trail event.

	{ “message” :

“Internal System Error” }

Example

$ curl -X POST http://localhost:8081/foglamp/audit \
-d '{ "severity": "FAILURE", "details": { "message": "Internal System Error" }, "source": "LOGGN" }'
{ "source": "LOGGN",
 "timestamp": "2018-04-17 11:49:55.480",
 "severity": "FAILURE",
 "details": { "message": "Internal System Error" }
}
$
$ curl -X GET http://localhost:8081/foglamp/audit?severity=FAILURE
{ "totalCount": 1,
 "audit": [{ "timestamp": "2018-04-16 18:32:28.427",
 "source" : "LOGGN",
 "details" : { "message": "Internal System Error" },
 "severity" : "FAILURE" }
]
}
$

Configuration Management

Configuration management in an important aspect of the REST API, however due to the discoverable form of the configuration of FogLAMP the API itself is fairly small.

The configuration REST API interacts with the configuration manager to create, retrieve, update and delete the configuration categories and values. Specifically all updates must go via the management layer as this is used to trigger the notifications to the components that have registered interest in configuration categories. This is the means by which the dynamic reconfiguration of FogLAMP is achieved.

category

The category interface is part of the Configuration Management for FogLAMP and it is used to create, retrieve, update and delete configuration categories and items.

GET categor(ies)

GET /foglamp/category - return the list of known categories in the configuration database

Response Payload

The response payload is a JSON object with an array of JSON objects, one per valid category.

	Name

	Type

	Description

	Example

	key

	string

	The category key, each category

has a unique textual key that defines it.

	network

	description

	string

	A description of the category that may be

used for display purposes.

	Network Settings

	displayName

	string

	Name of the category that may be

used for display purposes.

	Network Settings

Example

$ curl -X GET http://localhost:8081/foglamp/category
{
 "categories":
 [
 {
 "key": "SCHEDULER",
 "description": "Scheduler configuration",
 "displayName": "Scheduler"
 },
 {
 "key": "SMNTR",
 "description": "Service Monitor",
 "displayName": "Service Monitor"
 },
 {
 "key": "rest_api",
 "description": "FogLAMP Admin and User REST API",
 "displayName": "Admin API"
 },
 {
 "key": "service",
 "description": "FogLAMP Service",
 "displayName": "FogLAMP Service"
 },
 {
 "key": "Installation",
 "description": "Installation",
 "displayName": "Installation"
 },
 {
 "key": "General",
 "description": "General",
 "displayName": "General"
 },
 {
 "key": "Advanced",
 "description": "Advanced",
 "displayName": "Advanced"
 },
 {
 "key": "Utilities",
 "description": "Utilities",
 "displayName": "Utilities"
 }
]
}
$

GET category

GET /foglamp/category/{name} - return the configuration items in the given category.

Path Parameters

	name is the name of one of the categories returned from the GET /foglamp/category call.

Response Payload

The response payload is a set of configuration items within the category, each item is a JSON object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the FogLAMP server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X GET http://localhost:8081/foglamp/category/rest_api
{
 "enableHttp": {
 "description": "Enable HTTP (disable to use HTTPS)",
 "type": "boolean",
 "default": "true",
 "displayName": "Enable HTTP",
 "order": "1",
 "value": "true"
 },
 "httpPort": {
 "description": "Port to accept HTTP connections on",
 "type": "integer",
 "default": "8081",
 "displayName": "HTTP Port",
 "order": "2",
 "value": "8081"
 },
 "httpsPort": {
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
 },
 "certificateName": {
 "description": "Certificate file name",
 "type": "string",
 "default": "foglamp",
 "displayName": "Certificate Name",
 "order": "4",
 "validity": "enableHttp==\"false\"",
 "value": "foglamp"
 },
 "authentication": {
 "description": "API Call Authentication",
 "type": "enumeration",
 "options": [
 "mandatory",
 "optional"
],
 "default": "optional",
 "displayName": "Authentication",
 "order": "5",
 "value": "optional"
 },
 "authMethod": {
 "description": "Authentication method",
 "type": "enumeration",
 "options": [
 "any",
 "password",
 "certificate"
],
 "default": "any",
 "displayName": "Authentication method",
 "order": "6",
 "value": "any"
 },
 "authCertificateName": {
 "description": "Auth Certificate name",
 "type": "string",
 "default": "ca",
 "displayName": "Auth Certificate",
 "order": "7",
 "value": "ca"
 },
 "allowPing": {
 "description": "Allow access to ping, regardless of the authentication required and authentication header",
 "type": "boolean",
 "default": "true",
 "displayName": "Allow Ping",
 "order": "8",
 "value": "true"
 },
 "passwordChange": {
 "description": "Number of days after which passwords must be changed",
 "type": "integer",
 "default": "0",
 "displayName": "Password Expiry Days",
 "order": "9",
 "value": "0"
 },
 "authProviders": {
 "description": "Authentication providers to use for the interface (JSON array object)",
 "type": "JSON",
 "default": "{\"providers\": [\"username\", \"ldap\"] }",
 "displayName": "Auth Providers",
 "order": "10",
 "value": "{\"providers\": [\"username\", \"ldap\"] }"
 }
 }
$

GET category item

GET /foglamp/category/{name}/{item} - return the configuration item in the given category.

Path Parameters

	name - the name of one of the categories returned from the GET /foglamp/category call.

	item - the item within the category to return.

Response Payload

The response payload is a configuration item within the category, each item is a JSON object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the FogLAMP server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X GET http://localhost:8081/foglamp/category/rest_api/httpsPort
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
}

$

PUT category item

PUT /foglamp/category/{name}/{item} - set the configuration item value in the given category.

Path Parameters

	name - the name of one of the categories returned from the GET /foglamp/category call.

	item - the the item within the category to set.

Request Payload

A JSON object with the new value to assign to the configuration item.

	Name

	Type

	Description

	Example

	value

	string

	The new value of the configuration item.

	192.168.0.27

Response Payload

The response payload is the newly updated configuration item within the category, the item is a JSON object object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the FogLAMP server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	192.168.0.27

Example

$ curl -X PUT http://localhost:8081/foglamp/category/rest_api/httpsPort \
 -d '{ "value" : "1996" }'
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1996"
}
$

DELETE category item

DELETE /foglamp/category/{name}/{item}/value - unset the value of the configuration item in the given category.

This will result in the value being returned to the default value if one is defined. If not the value will be blank, i.e. the value property of the JSON object will exist with an empty value.

Path Parameters

	name - the name of one of the categories returned from the GET /foglamp/category call.

	item - the the item within the category to return.

Response Payload

The response payload is the newly updated configuration item within the category, the item is a JSON object object with the following set of properties.

	Name

	Type

	Description

	Example

	description

	string

	A description of the configuration item that may be used in a user interface.

	The IPv4 network address of the FogLAMP server

	type

	string

	A type that may be used by a user interface to know how to display an item.

	IPv4

	default

	string

	An optional default value for the configuration item.

	127.0.0.1

	displayName

	string

	Name of the category that may be used for display purposes.

	IPv4 address

	order

	integer

	Order at which category name will be displayed.

	1

	value

	string

	The current configured value of the configuration item. This may be empty if no value has been set.

	127.0.0.1

Example

$ curl -X DELETE http://localhost:8081/foglamp/category/rest_api/httpsPort/value
{
 "description": "Port to accept HTTPS connections on",
 "type": "integer",
 "default": "1995",
 "displayName": "HTTPS Port",
 "order": "3",
 "validity": "enableHttp==\"false\"",
 "value": "1995"
}
$

POST category

POST /foglamp/category - creates a new category

Request Payload

A JSON object that defines the category.

	Name

	Type

	Description

	Example

	key

	string

	The key that identifies the category.

If the key already exists as a category

then the contents of this request

is merged with the data stored.

	backup

	description

	string

	A description of the configuration category

	Backup configuration

	items

	list

	An optional list of items to create in this category

	

	 name

 User API Reference

User API Reference

The user API provides a mechanism to access the data that is buffered within FogLAMP. It is designed to allow users and applications to get a view of the data that is available in the buffer and do analysis and possibly trigger actions based on recently received sensor readings.

In order to use the entry points in the user API, with the exception of the /foglamp/authenticate entry point, there must be an authenticated client calling the API. The client must provide a header field in each request, authtoken, the value of which is the token that was retrieved via a call to /foglamp/authenticate. This token must be checked for validity and also that the authenticated entity has user or admin permissions.

Browsing Assets

asset

The asset method is used to browse all or some assets, based on search and filtering.

GET all assets

GET /foglamp/asset - Return an array of asset codes buffered in FogLAMP and a count of assets by code.

Response Payload

An array of JSON objects, one per asset.

	Name

	Type

	Description

	Example

	[].assetCode

	string

	The code of the asset

	fogbench/accelerometer

	[].count

	number

	The number of recorded readings for the asset code

	22359

Example

$ curl -s http://localhost:8081/foglamp/asset
[{ "count": 18, "assetCode": "fogbench/accelerometer" },
 { "count": 18, "assetCode": "fogbench/gyroscope" },
 { "count": 18, "assetCode": "fogbench/humidity" },
 { "count": 18, "assetCode": "fogbench/luxometer" },
 { "count": 18, "assetCode": "fogbench/magnetometer" },
 { "count": 18, "assetCode": "fogbench/mouse" },
 { "count": 18, "assetCode": "fogbench/pressure" },
 { "count": 18, "assetCode": "fogbench/switch" },
 { "count": 18, "assetCode": "fogbench/temperature" },
 { "count": 18, "assetCode": "fogbench/wall clock" }]
$

GET asset readings

GET /foglamp/asset/{code} - Return an array of readings for a given asset code.

Path Parameters

	code - the asset code to retrieve.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 readings.

Response Payload

An array of JSON objects with the readings data for a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	[].timestamp

	timestamp

	The time at which the reading was received.

	2018-04-16 14:33:18.215

	[].reading

	JSON object

	The JSON reading object received from the sensor.

	{“reading”: {“x”:0, “y”:0, “z”:1}

Example

$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Faccelerometer
[{ "reading": { "x": 0, "y": -2, "z": 0 }, "timestamp": "2018-04-19 14:20:59.692" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:20:54.643" },
 { "reading": { "x": -1, "y": 2, "z": 1 }, "timestamp": "2018-04-19 14:20:49.899" },
 { "reading": { "x": -1, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:20:47.026" },
 { "reading": { "x": -1, "y": -2, "z": -2 }, "timestamp": "2018-04-19 14:20:42.746" },
 { "reading": { "x": 0, "y": 2, "z": 0 }, "timestamp": "2018-04-19 14:20:37.418" },
 { "reading": { "x": -2, "y": -1, "z": 2 }, "timestamp": "2018-04-19 14:20:32.650" },
 { "reading": { "x": 0, "y": 0, "z": 1 }, "timestamp": "2018-04-19 14:06:05.870" },
 { "reading": { "x": 1, "y": 1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.870" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:06:05.869" },
 { "reading": { "x": 2, "y": -1, "z": 0 }, "timestamp": "2018-04-19 14:06:05.868" },
 { "reading": { "x": -1, "y": -2, "z": 2 }, "timestamp": "2018-04-19 14:06:05.867" },
 { "reading": { "x": 2, "y": 1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.867" },
 { "reading": { "x": 1, "y": -2, "z": 1 }, "timestamp": "2018-04-19 14:06:05.866" },
 { "reading": { "x": 2, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:06:05.865" },
 { "reading": { "x": 0, "y": -1, "z": 2 }, "timestamp": "2018-04-19 14:06:05.865" },
 { "reading": { "x": 0, "y": -2, "z": 1 }, "timestamp": "2018-04-19 14:06:05.864" },
 { "reading": { "x": -1, "y": -2, "z": 0 }, "timestamp": "2018-04-19 13:45:15.881" }]
$
$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Faccelerometer?limit=5
[{ "reading": { "x": 0, "y": -2, "z": 0 }, "timestamp": "2018-04-19 14:20:59.692" },
 { "reading": { "x": 0, "y": 0, "z": -1 }, "timestamp": "2018-04-19 14:20:54.643" },
 { "reading": { "x": -1, "y": 2, "z": 1 }, "timestamp": "2018-04-19 14:20:49.899" },
 { "reading": { "x": -1, "y": -1, "z": 1 }, "timestamp": "2018-04-19 14:20:47.026" },
 { "reading": { "x": -1, "y": -2, "z": -2 }, "timestamp": "2018-04-19 14:20:42.746" }]
$

GET asset reading

GET /foglamp/asset/{code}/{reading} - Return an array of single readings for a given asset code.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 single readings.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The time at which the reading was received.

	2018-04-16 14:33:18.215

	{reading}

	JSON object

	The value of the specified reading.

	“temperature”: 20

Example

$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Fhumidity/temperature
[{ "temperature": 20, "timestamp": "2018-04-19 14:20:59.692" },
 { "temperature": 33, "timestamp": "2018-04-19 14:20:54.643" },
 { "temperature": 35, "timestamp": "2018-04-19 14:20:49.899" },
 { "temperature": 0, "timestamp": "2018-04-19 14:20:47.026" },
 { "temperature": 37, "timestamp": "2018-04-19 14:20:42.746" },
 { "temperature": 47, "timestamp": "2018-04-19 14:20:37.418" },
 { "temperature": 26, "timestamp": "2018-04-19 14:20:32.650" },
 { "temperature": 12, "timestamp": "2018-04-19 14:06:05.870" },
 { "temperature": 38, "timestamp": "2018-04-19 14:06:05.869" },
 { "temperature": 7, "timestamp": "2018-04-19 14:06:05.869" },
 { "temperature": 21, "timestamp": "2018-04-19 14:06:05.868" },
 { "temperature": 5, "timestamp": "2018-04-19 14:06:05.867" },
 { "temperature": 40, "timestamp": "2018-04-19 14:06:05.867" },
 { "temperature": 39, "timestamp": "2018-04-19 14:06:05.866" },
 { "temperature": 29, "timestamp": "2018-04-19 14:06:05.865" },
 { "temperature": 41, "timestamp": "2018-04-19 14:06:05.865" },
 { "temperature": 46, "timestamp": "2018-04-19 14:06:05.864" },
 { "temperature": 10, "timestamp": "2018-04-19 13:45:15.881" }]
$
$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Faccelerometer?limit=5
[{ "temperature": 20, "timestamp": "2018-04-19 14:20:59.692" },
 { "temperature": 33, "timestamp": "2018-04-19 14:20:54.643" },
 { "temperature": 35, "timestamp": "2018-04-19 14:20:49.899" },
 { "temperature": 0, "timestamp": "2018-04-19 14:20:47.026" },
 { "temperature": 37, "timestamp": "2018-04-19 14:20:42.746" }]
$

GET asset reading summary

GET /foglamp/asset/{code}/{reading}/summary - Return minimum, maximum and average values of a reading by asset code.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	{reading}.average

	number

	The average value of the set of

sensor values selected in the query string

	27

	{reading}.min

	number

	The minimum value of the set of

sensor values selected in the query string

	0

	{reading}.max

	number

	The maximum value of the set of

sensor values selected in the query string

	47

Example

$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Fhumidity/temperature/summary
{ "temperature": { "max": 47, "min": 0, "average": 27 } }
$

GET timed average asset reading

GET /foglamp/asset/{code}/{reading}/series - Return minimum, maximum and average values of a reading by asset code in a time series. The default interval in the series is one second.

Path Parameters

	code - the asset code to retrieve.

	reading - the sensor from the assets JSON formatted reading.

Request Parameters

	limit - set the limit of the number of readings to return. If not specified, the defaults is 20 single readings.

Response Payload

An array of JSON objects with a series of readings sorted in reverse chronological order.

	Name

	Type

	Description

	Example

	timestamp

	timestamp

	The time the reading represents.

	2018-04-16 14:33:18

	average

	number

	The average value of the set of

sensor values selected in the query string

	27

	min

	number

	The minimum value of the set of

sensor values selected in the query string

	0

	max

	number

	The maximum value of the set of

sensor values selected in the query string

	47

Example

$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Fhumidity/temperature/series
[{ "timestamp": "2018-04-19 14:20:59", "max": 20, "min": 20, "average": 20 },
 { "timestamp": "2018-04-19 14:20:54", "max": 33, "min": 33, "average": 33 },
 { "timestamp": "2018-04-19 14:20:49", "max": 35, "min": 35, "average": 35 },
 { "timestamp": "2018-04-19 14:20:47", "max": 0, "min": 0, "average": 0 },
 { "timestamp": "2018-04-19 14:20:42", "max": 37, "min": 37, "average": 37 },
 { "timestamp": "2018-04-19 14:20:37", "max": 47, "min": 47, "average": 47 },
 { "timestamp": "2018-04-19 14:20:32", "max": 26, "min": 26, "average": 26 },
 { "timestamp": "2018-04-19 14:06:05", "max": 46, "min": 5, "average": 27.8 },
 { "timestamp": "2018-04-19 13:45:15", "max": 10, "min": 10, "average": 10 }]
$
$ curl -s http://localhost:8081/foglamp/asset/fogbench%2Fhumidity/temperature/series
[{ "timestamp": "2018-04-19 14:20:59", "max": 20, "min": 20, "average": 20 },
 { "timestamp": "2018-04-19 14:20:54", "max": 33, "min": 33, "average": 33 },
 { "timestamp": "2018-04-19 14:20:49", "max": 35, "min": 35, "average": 35 },
 { "timestamp": "2018-04-19 14:20:47", "max": 0, "min": 0, "average": 0 },
 { "timestamp": "2018-04-19 14:20:42", "max": 37, "min": 37, "average": 37 }]

 Version History

Version History

FogLAMP v1

v1.9.2

Release Date: 2021-09-29

	FogLAMP Core

	New Features:

	The ability for south plugins to persist data between executions of south services has been added for plugins written in C/C++. This follows the same model as already available for north plugins.

	Notification delivery plugins now also receive the data that caused the rule to trigger. This can be used to deliver values in the notification delivery plugins.

	A new option has been added to the sqlite storage plugin only that allows assets to be excluded from consideration in the purge process.

	A new purge process has been added to control the growth of statistics history and audit trails. This new process is known as the “System Purge” process.

	The support bundle has been updated to include details of the packages installed.

	The package repository API endpoint has been updated to support Ubuntu 20.04 repository end point.

	The handling of updates from RPM package repositories has been improved.

	The certificate store has been updated to support more formats of certificates, including DER, P12 and PFX format certificates.

	The documentation has been updated to include an improved & detailed introduction to filters.

	The OMF north plugin documentation has been re-organised and updated to include the latest features that have been introduced to this plugin.

	A new section has been added to the documentation that discusses the tuning of the edge based control path.

	
	Bug Fix:

	
	A rare race condition during ingestion of readings would cause the south service to terminate and restart. This has now been resolved.

	In some circumstances it was seen that north services could send the same data more than once. This has now been corrected.

	An issue that caused an intermittent error in the tracking of data sent north has been resolved. This only impacted north services and not north tasks.

	An optimisation has been added to prevent north plugins being sent empty data sets when the filter chain removes all the data in a reading set.

	An issue that prevented a north service restarting correctly when certain combinations of filters were present has been resolved.

	The API for retrieving the list of backups on the system has been improved to honour the limit and offset parameters.

	An issue with the restore operation always restoring the latest backup rather than the chosen backup has been resolved.

	The support package failed to include log data if binary data had been written to syslog. This has now been resolved.

	The configuration category for the system purge was in the incorrect location with the configuration category tree, this has now been correctly placed underneath the “Utilities” item.

	It was not possible to set a notification to always retrigger as there was a limitation that there must always be 1 second between notification triggers. This restriction has now been removed and it is possible to set a retrigger time of zero.

	An error in the documentation for the plugin developers guide which incorrectly documented how to build debug binaries has been corrected.

	GUI

	New Features:

	The user interface has been updated to improve the filtering of logs when a large number of services have been defined within the instance.

	The user interface input validation for hostnames and port has been improved in the setup screen. A message is now displayed when an incorrect port or address is entered.

	The user interface now prompts to accept a self signed certificate if one is configured.

	Bug Fix:

	If a south or north plugin included a script type configuration item the GUI failed to allow the service or task using this plugin to be created correctly. This has now been resolved.

	The ability to paste into password fields has been enabled in order to allow copy/paste of keys, tokens etc into configuration of the south and north services.

	An issue that could result in filters not being correctly removed from a pipeline of 2 or more filters has been resolved.

	Plugins

	New Features:

	A new south plugin has been added that can be used to support a number of REST based APIs. The plugin allows processing of JSON payloads or with the addition of Python scripting other payload formats may also be supported. This plugin also supports a choice of methods to control the set of readings data that will be returned.

	A new OPC/UA south plugin has been created based on the Safe and Secure OPC/UA library. This plugin supports authentication and encryption mechanisms.

	A new plugin has been added to fetch data from the Suez Water cloud API service.

	Control features have now been added to the modbus south plugin that allows the writing of registers and coils via the south service control channel.

	The modbus south control flow has been updated to use both 0x06 and 0x10 function codes. This allows items that are split across multiple modbus registers to be written in a single write operation.

	The MQTT Scripted south plugin has been updated to allow multiple assets to be ingested in a single plugin.

	The MQTT Scripted south plugin has been enhanced to support MQTTS as well as MQTT.

	The MQTT scripted plugin has been updated to support the return of a specific asset as well as values.

	The OMF plugin has been updated to support more complex scenarios for the placement of assets with the PI Asset Framework.

	The OMF north plugin hinting mechanism has been extended to support asset framework hierarchy hints.

	The OMF north plugin now defaults to using a concise naming scheme for tags in the PI server.

	The Kafka north plugin has been updated to allow timestamps of higher granularity than 1 second, previously timestamps would be truncated to the previous second.

	The Kafka north plugin has been enhanced to give the option of sending JSON objects as strings to Kafka, as previously the default, or sending them as JSON objects.

	The HTTP-C north plugin has been updated to allow the inclusion of customer HTTP headers.

	The Python35 Filter plugin did not correctly handle string type data points. This has now been resolved.

	The vibration velocity filter has been updated to support multiple channel data.

	The MQTT broker package now supports RPM platforms.

	The OMF Hint filter documentation has been updated to describe the use of regular expressions when defining the asset name to which the hint should be applied.

	The Beckhoff south plugin documentation has been updated to include details on how to create the AMS route in a number of different scenarios.

	Bug Fix:

	An issue with string data that had quote characters embedded within the reading data has been resolved. This would cause data to be discarded with a bad formatting message in the log.

	An issue that could result in the configuration for the incorrect plugin being displayed has now been resolved.

	An issue with the modbus south plugin that could cause resource starvation in the threads used for set point write operations has been resolved.

	A race condition in the modbus south that could cause an issue if the plugin configuration is changed during a set point operation.

	Importing the Pandas Python library into the script within the MQTT scripted plugin previously failed due to the way Pandas uses global variables. This has now been resolved such that Pandas can be imported, however it should be noted that a filter can not import Pandas if the south plugin already imports Pandas.

	When using the South MQTT Scripted plugin, if the Python script returned an asset name as well as a reading the asset name would be corrupted on second and subsequent calls. This has now been resolved.

	The MQTT scripted plugin would occasionally fail to shutdown cleanly. This issue has now been resolved.

	The MQTT Scripted plugin could not previously deal with payloads that consisted of a simple negative number. This has now been corrected.

	An issue with the MQTT notification plugin and the MQTT scripted plugin when installing with RPM packages has been resolved.

	The CSV playback south plugin installation on CentOS 7 platforms has now been corrected.

	The digiducer south plugin has been updated to support the latest release of the underlying libraries that support it.

	The error handling of the OMF north plugin has been improved such that assets that contain data types that are not supported by the OMF endpoint of the PI Server are removed and other data continues to be sent to the PI Server.

	The Kafka north plugin was not always able to reconnect if the Kafka service was not available when it was first started. This issue has now been resolved.

	The Kafka north plugin would on occasion duplicate data if a connection failed and was later reconnected. This has been resolved.

	A number of fixes have been made to the Kafka north plugin, these include; fixing issues caused by quoted data in the Kafka payload, sending timestamps accurate to the millisecond, fixing an issue that caused data duplication and switching the the user timestamp.

	A problem with the quoting of string type data points on the North HTTP-C plugin has been fixed.

	String type variables in the OPC/UA north plugin were incorrectly having extra quotes added to them. This has now been resolved.

	The delta filter previously did not manage calculating delta values when a datapoint changed from being an integer to a floating point value or vice versa. This has now been resolved and delta values are correctly calculated when these changes occur.

	The vibration features plugin has been updated to run on Ubuntu 20 platforms.

	The signal processing filter plugin now installs correctly on CentOS platforms.

	The data frames filter plugin is now supported on RPM based platforms.

	An issue with the vibration features filter on Ubuntu 18 has been resolved.

	The example path shown in the DHT11 plugin in the developers guide was incorrect, this has now been fixed.

v1.9.1

Release Date: 2021-05-27

	FogLAMP Core

	New Features:

	Support has been added for Ubuntu 20.04 LTS.

	The core components have been ported to build and run on CentOS 8

	A new option has been added to the command line tool that controls the system. This option, called purge, allows all readings related data to be purged from the system whilst retaining the configuration. This allows a system to be tested and then reset without losing the configuration.

	A new service interface has been added to the south service that allows set point control and operations to be performed via the south interface. This is the first phase of the set point control feature in the product.

	The documentation has been improved to include the new control functionality in the south plugin developers guide.

	An improvement has been made to the documentation layout for default plugins to make the GUI able to find the plugin documentation.

	Documentation describing the installation of PostgreSQL on CentOS has been updated.

	The documentation has been updated to give more detail around the topic of self-signed certificates.

	Bug Fix:

	A security flaw that allowed non-privileged users to update the certificate store has been resolved.

	A bug that prevented users being created with certificate based authentication rather than password based authentication has been fixed.

	Switching storage plugins from SQLite to PostgreSQL caused errors in some circumstances. This has now been resolved.

	The HTTP code returned by the ping command has been updated to correctly report 401 errors if the option to allow ping without authentication is turned off.

	The HTTP error code returned when the notification service is not available has been corrected.

	Disabling and re-enabling the backup and restore task schedules sometimes caused a restart of the system. This has now been resolved.

	The error message returned when schedules could not be enabled or disabled has been improved.

	A problem related to readings with nested data not correctly getting copied has been resolved.

	An issue that caused problems if a service was deleted and then a new service was recreated using the name of the previously deleted service has been resolved.

	GUI

	New Features:

	Links to the online help have been added on a number of screens in the user interface.

	Improvements have been made to the user management screens of the GUI.

	Plugins

	New Features:

	North services now support Python as well as C++ plugins.

	A new south plugin has been created to read data from the ABB cloud service.

	A new south plugin has been added for getting vibration data from a set of FLIR GW65 vibration sensors.

	A new delivery notification plugin has been added that uses the set point control mechanism to invoke an action in the south plugin.

	A new notification delivery mechanism has been implemented that uses the set point control mechanism to assert control on a south service. The plugin allows you to set the values of one or more control items on the notification triggered and set a different set of values when the notification rule clears.

	Support has been added in the OPC/UA north plugin for array data. This allows FFT spectrum data to be represented in the OPC/UA server.

	The documentation for the OPC/UA north plugin has been updated to recommend running the plugin as a service.

	A new storage plugin has been added that uses SQLite. This is designed for situations with low bandwidth sensors and stores all the readings within a single SQLite file.

	The CSV Writer filter has been updated to support writing encrypted files.

	Support has been added to use RTSP video streams in the person detection plugin.

	The delta filter has been updated to allow an optional set of asset specific tolerances to be added in addition to the global tolerance used by the plugin when deciding to forward data.

	The Python script run by the MQTT scripted plugin now receives the topic as well as the message.

	The OMF plugin has been updated in line with recommendations from the OMF group regarding the use of SCRF Defense.

	The OMFHint plugin has been updated to support wildcarding of asset names in the rules for the plugin.

	New documentation has been added to help in troubleshooting PI connection issues.

	The pi_server and ocs north plugins are deprecated in favour of the newer and more feature rich OMF north plugin. These deprecated plugins cannot be used in north services and are only provided for backward compatibility when run as north tasks. These plugins will be removed in a future release.

	Bug Fix:

	The OMF plugin has been updated to better deal with nested data.

	Some improvements to error handling have been added to the InfluxDB north plugin for version 1.x of InfluxDB.

	The Python 35 filter stated it used the Python version 3.5 always, in reality it uses whatever Python 3 version is installed on your system. The documentation has been updated to reflect this.

	The Asset Split filter plugin previously logged debug messages by default, this has now been resolved.

	Fixed a bug that treated arrays of bytes as if they were strings in the OPC/UA south plugin.

	The FFT2 filter used a single asset name for all output FFT’s. If an incoming asset had multiple data points they would each have a separate FFT applied to them and then output with the same asset name. This caused confusion. Now if there are multiple data points each will have a unique asset name for the output FFT. This asset name is made up of the configured output asset name with the data point name appended. For example an inout asset having X, Y and Z data points with the output asset configured to be FFT will result in 3 assets, FFTX, FFTY and FFTZ.

	The HTTP North C plugin would not correctly shutdown, this effected reconfiguration when run as an always on service. This issue has now been resolved.

	The description of the statistics filter was incorrect, this has now been corrected.

	An issue with the SQLite In Memory storage plugin that caused database locks under high load conditions has been resolved.

v1.9.0

Release Date: 2021-02-19

	FogLAMP Core

	New Features:

	Support has been added in the Python north sending process for nested JSON reading payloads.

	A new section has been added to the documentation to document the process of writing a notification delivery plugin. As part of this documentation a new delivery plugin has also been written which delivers notifications via an MQTT broker.

	The plugin developers guide has been updated with information regarding installation and debugging of new plugins.

	The developer documentation has been updated to include details for writing both C++ and Python filter plugins.

	An always on north service has been added. This compliments the current north task and allows a choice of using scheduled windows to send data north or sending data as soon as it is available.

	The Python north sending process required the JQ filter information to be mandatory in north plugins. JQ filtering has been deprecated and will be removed in the next major release.

	Storage plugins may now have configuration options that are controllable via the API and the graphical interface.

	The ping API call has been enhanced to return the version of the core component of the system.

	The SQLite storage plugin has been enhanced to distribute readings for multiple assets across multiple databases. This improves the ingest performance and also improves the responsiveness of the system when very large numbers of readings are buffered within the instance.

	Documentation has been added for configuration of the storage service.

	Bug Fix:

	The REST API for the notification service was missing the re-trigger time information for configured notification in the retrieval and update calls. This has now been added.

	If the SQLite storage plugin is configured to use managed storage FogLAMP fails to restart. This has been resolved, the SQLite storage service no longer uses the managed option and will ignore it if set.

	An upgraded version of the HTTPS library has been applied, this solves an issue with large payloads in HTTPS exchanges.

	A number of Python source files contained incorrect references to the readthedocs page. This has now been resolved.

	The retrieval of log information was incorrectly including debug log output if the requested level was information and higher. This is now correctly filtered out.

	If a south plugin generates bad data that can not be inserted into the storage layer, that plugin will buffer the bad data forever and continually attempt to insert it. This causes the queue to build on the south plugin and eventually will exhaust system memory. To prevent this if data can not be inserted for a number of attempts it will be discarded in the south service. This allows the bad data to be dropped and newer, good data to be handled correctly.

	When a statistics value becomes greater than 2,147,483,648 the storage layer would fail, this has now been fixed.

	During installation of plugins the user interface would occasionally flag the system as down due to congestion in the API layer. This has now been resolved and the correct status of the system should be reflected.

	The notification service previously logged errors if no rule/delivery notification plugins had been installed. This is no longer the case.

	An issue with JSON configuration options that contained escaped strings within the JSON caused the service with the associated configuration to fail to run. This has now been resolved.

	The Postgres storage engine limited the length of asset codes to 50 characters, this has now been increased to 255 characters.

	Notifications based on asset names that contain the character ‘.’ in the name would not receive any data. This has now been resolved.

	Known Issues:

	Known issues with Postgres storage plugins. During the final testing of the 1.9.0 release a problem has been found with switching to the PostgreSQL storage plugin via the user interface. Until this is resolved switching to PostgreSQL is only supported by manual editing the storage.json as per version 1.8.0. A patch to resolve this is likely to be released in the near future.

	GUI

	New Features:

	The user interface now shows the retrigger time for a notification.

	The user interface now supports adding a north service as well as a north task.

	A new help menu item has been added to the user interface which will cause the readthedocs documentation to be displayed. Also the wizard to add the south and north services has been enhanced to give an option to display the help for the plugins.

	Bug Fix:

	The user interface now supports the ability to filter on all severity levels when viewing the system log.

	Plugins

	New Features:

	The OPC/UA south plugin has been updated to allow the definition of the minimum reporting time between updates. It has also been updated to support subscription to arrays and DATE_TIME type with the OPC/UA server.

	AWS SiteWise requires the SourceTimestamp to be non-null when reading from an OPC/UA server. This was not always the case with the OPC/UA north plugin and caused issues when ingesting data into SiteWise. This has now been corrected such that SourceTimestamp is correctly set in addition to server timestamp.

	The HTTP-C north plugin has been updated to support primary and secondary destinations. It will automatically failover to the secondary if the primary becomes unavailable. Fail back will occur either when the secondary becomes unavailable or the plugin is restarted.

	Bug Fix:

	An issue with different versions of the libmodbus library prevented the modbus-c plugin building on Moxa gateways, this has now been resolved.

	An issue with building the MQTT notification plugin on CentOS/RedHat platforms has been resolved. This plugin now builds correctly on those platforms.

	The modbus plugin has been enhanced to support Modbus over IPv6, also request timeout has been added as a configuration option. There have been improvements to the error handling also.

	The DNP3 south plugin incorrectly treated all data as strings, this meant it was not easy to process the data with generic plugins. This has now been resolved and data is treated as floating point or integer values.

	The OMF north plugin previously reported the incorrect version information. This has now been resolved.

	A memory issue with the python35 filter integration has been resolved.

	Packaging conflicts between plugins that used the same additional libraries have been resolved to allow both plugins to be installed on the same machine. This issue impacted the plugins that used MQTT as a transport layer.

	The OPC/UA north plugin did not correctly handle the types for integer data, this has now been resolved.

	The OPCUA south plugin did not allow subscriptions to integer node ids. This has now been added.

	A problem with reading multiple modbus input registers into a single value has been resolved in the ModbusC plugin.

	OPC/UA north nested objects did not always generate unique node IDs in the OPC/UA server. This has now been resolved.

v1.8.2

Release Date: 2020-11-03

	FogLAMP Core

	Bug Fix:

	Following the release of a new version of a Python package the 1.8.1 release was no longer installable. This issue is resolved by the 1.8.2 patch release of the core package. All plugins from the 1.8.1 release will continue to work with the 1.8.2 release.

v1.8.1

Release Date: 2020-07-08

	FogLAMP Core

	New Features:

	Support has been added for the deployment on Moxa gateways running a variant of Debian 9 Stretch.

	The purge process has been improved to also purge the statistics history and audit trail of the system. New configuration parameters have been added to manage the amount of data to be retain for each of these.

	An issue with installing on the Mendel Day release on Google’s Coral boards has been resolved.

	The REST API has been expanded to allow an API call to be made to set the repository from which new packages will be pulled when installing plugins via the API and GUI.

	A problem with the service discovery failing to respond correctly after it had been running for a short while has been rectified. This allows external micro services to now correctly discover the core micro service.

	Details for making contributions to the FogLAMP project have been added to the source repository.

	The support bundle has been improved to include more information needed to diagnose issues with sending data to PI Servers

	The REST API has been extended to add a new call that will return statistics in terms of rates rather than absolute values.

	The documentation has been updated to include guidance on setting up package repositories for installing the software and plugins.

	Bug Fix:

	If JSON type configuration parameters were marked as mandatory there was an issue that prevented the update of the parameters. This has now been resolved.

	After changing storage engine from sqlite to Postgres using the configuration option in the GUI or via the API, the new storage engine would incorrectly report itself as sqlite in the API and user interface. This has now been resolved.

	External micro-services that restarted without a graceful shutdown would fail to register with the service registry as nothing was able to unregister the failed service. This has now been relaxed to allow the recovered service to be correctly registered.

	The configuration of the storage system was previously not available via the GUI. This has now been resolved and the configuration can be viewed in the Advanced category of the configuration user interface. Any changes made to the storage configuration will only take effect on the next restart of FogLAMP. This allows administrators to change the storage plugins used without the need to edit the storage.json configuration file.

	GUI

	Bug Fix:

	An improvement to the user experience for editing password in the GUI has been implemented that stops the issue with passwords disappearing if the input field is clicked.

	Password validation was not correctly occurring in the GUI wizard that adds south plugins. This has now be rectified.

	Plugins

	New Features:

	The Modbus plugin did not gracefully handle interrupted reads of data from modes TCP devices during the bulk transfer of data. This would result in assets missing certain data points and subsequent issues in the north systems that received those assets getting changes in the asset data type. This was a particular issue when dealign with the PI Web API and would result in excessive types being created. The Modbus plugin now detects the issues and takes action to ensure complete assets are read.

	A new image processing plugin, south human detector, that uses the Google Tensor Flow machine learning platform has been added to the FogLAMP project.

	A new Python plugin has been added that can send data north to a Kafka system.

	A new south plugin has been added for the Dynamic Ratings B100 Electronic Temperature Monitor used for monitoring the condition of electricity transformers.

	A new plugin has been contributed to the project by Nexcom that implements the SAE J1708 protocol for accessing the ECU’s of heavy duty vehicles.

	An issue with missing dependencies on the Coral Mendel platform prevent 1.8.0 packages installing correctly without manual intervention. This has now been resolved.

	The image recognition plugin, south-human-detector, has been updated to work with the Google Coral board running the Mendel Day release of Linux.

	Bug Fix:

	A missing dependency in v1.8.0 release for the package foglamp-south-human-detector meant that it could not be installed without manual intervention. This has now been resolved.

	Support has been added to the south-human-detector plugin for the Coral Camera module in addition to the existing support for USB connected cameras.

	An issue with installation of the external shared libraries required by the USB4704 plugin has been resolved.

v1.8.0

Release Date: 2020-05-08

	FogLAMP Core

	New Features:

	Documentation has been added for the use of the SQLite In Memory storage plugin.

	The support bundle functionality has been improved to include more detail in order to aid tracking down issues in installations.

	Improvements have been made to the documentation of the OMF plugin in line with the enhancements to the code. This includes the documentation of OCS and EDS support as well as PI Web API.

	An issue with forwarding data between two FogLAMP instances in different time zones has been resolved.

	A new API entry point has been added to the FogLAMP REST API to allow the removal of plugin packages.

	The notification service has been updated to allow for the delivery of multiple notifications in parallel.

	Improvements have been made to the handling of asset codes within the buffer in order to improve the ingest performance of FogLAMP. This is transparent to all services outside of the storage service and has no impact on the public APIs.

	Extra information has been added to the notification trigger such that trigger time and the asset that triggered the notification is included.

	A new configuration item type of “northTask” has been introduced. It allows the user to enter the name of a northTask in the configuration of another category within FogLAMP.

	Data on multiple assets may now be requested in a single call to the asset growing API within FogLAMP.

	An additional API has been added to the asset browser to allow time bucketed data to be returned for multiple data points of multiple assets in a single call.

	Support has been added for nested readings within the reading data.

	Messages about exceeding the configured latency of the south service may be repeated when the latency is above the configured value for a period of time. These have now been replaced with a single message when the latency is exceeded and another when the condition is cleared.

	The feedback provided to the user when a configuration item is set to an invalid value has been improved.

	Configuration items can now be marked as mandatory, this improves the user experience when configuring plugins.

	A new configuration item type, code, has been added to improve the user experience when adding code snippets in configuration data.

	Improvements have been made to the caching of configuration data within the core of FogLAMP.

	The logging of package installation has been improved.

	Additions have been added to the public API to allow multiple audit log sources to be extracted in a single API call.

	The audit trail has been improved to show all package additions and updates in the audit trail.

	A new API has been added to allow notification plugin packages to be updated.

	A new API has been added to allow filter code versions to be updated.

	A new API call has been added to allow retrieval of reading data over a period of time which is averaged into time buckets within that time period.

	The notification service now supports rule plugins implemented in Python as well as C++.

	Improvements have been made to the checking of configuration items such that minimum, maximum values and string lengths are now checked.

	The plugin developers documentation has been updated to include a description building C/C++ south plugins.

	Bug Fix:

	Improvements have been made to the generation of the support bundle.

	An issue in the reporting of the task names in the foglamp status script has been resolved.

	The purge by size (number of readings) would remove all data if the number of rows to retain was less than 1000, this has now been resolved.

	On occasions plugins would disappear from the list of available plugins, this has now been resolved.

	Improvements have been made to the management of the certificate store to ensure the correct files are uploaded to the store.

	An expensive and unnecessary test was being performed in the asset browsing API of FogLAMP. This slowed down the user interface and put load n the server. This has now been removed and has improved the performance of examining the buffered data within the FogLAMP instance.

	The FogBench utility used to send data to FogLAMP has been updated in line with new Python packages for the CoAP protocol.

	Configuration category relationships were not always correctly cleaned up when a filter is deleted, this has now been resolved.

	The support bundle functionality has been updated to provide information on the Python processes.

	The REST API incorrectly allowed configuration categories with a blank name to be created. This has now been prevented.

	Validation of minimum and maximum configuration item values was not correctly performed in the REST API, this has now been resolved.

	Nested objects within readings could cause the storage engine to fail and those readings to not be stored. This has now been resolved.

	On occasion shutting down a service may fail if the filters for that service have not been activated, this has now been resolved.

	An issue that cause notifications for asset whose names contain special characters has been resolved.

	The asset tracker was not correctly adding entries to the asset tracker, this has now been resolved.

	An intermittent issue that prevented the notification service being enabled on the Buster release on Raspberry Pi has been resolved.

	An intermittent problem that would prevent the north sending process to fail has been resolved.

	Performance improvements have been made to the installation of new packages from the package repository from within the FogLAMP API and user interface.

	It is now possible to reuse the name of a north process after deleting one with the same name.

	The incorrect HTTP error code is returned by the asset summary API call if an asset does not exist, this has now been resolved.

	Deleting and recreating a south service may cause errors in the log to appear. These have now been resolved.

	The SQLite and SQLiteInMemory storage engines have been updated to enable a purge to be defined that reduces the number of readings to a specified value rather than simply allowing a purge by the age of the data. This is designed to allow tighter controls on the size of the buffer database when high frequency data in particular is being stored within the FogLAMP buffer.

	GUI

	New Features:

	The user interface for viewing logs has been improve to allow filtering by service and task. A search facility has also been added.

	The requirement that a key file is uploaded with every certificate file has been removed from the graphical user interface as this is not always true.

	The performance of adding a new notification via the graphical user interface has been improved.

	The feedback in the graphical user interface has been improved when installation of the notification service fails.

	Installing the FogLAMP graphical user interface on OSX platforms fails due to the new version of the brew package manager. This has now been resolved.

	Improve script editing has been added to the graphical user interface.

	Improvements have been made to the user interface for the installations and enabling of the notification service.

	The notification audit log user interface has been improved in the GUI to allow all the logs relating to notifications to be viewed in a single screen.

	The user interface has been redesigned to make better use of the screen space when editing south and north services.

	Support has been added to the graphical user interface to determine when configuration items are not valid based on the values of other items These items that are not valid in the current configuration are greyed out in the interface.

	The user interface now shows the version of the code in the settings page.

	Improvements have been made to the user interface layout to force footers to stay at the bottom of the screen.

	Bug Fix:

	Improvements have been made to the zoom and pan options within the graph displays.

	The wizard used for the creation of new notifications in the graphical user interface would loose values when going back and forth between pages, this has now been resolved.

	A memory leak that was affecting the performance of the graphical user interface has been fixed, improving performance of the interface.

	Incorrect category names may be displayed int he graphical user interface, this has now be resolved.

	Issues with the layout of the graphical user interface when viewed on an Apple iPad have been resolved.

	The asset graph in the graphical user interface would sometimes not resize to fit the screen correctly, this has now been resolved.

	The “Asset & Readings” option in the graphical user interface was initially slow to respond, this has now been improved.

	The pagination of audit logs has bene improved when multiple sources are displayed.

	The counts in the user interface for notifications have been corrected.

	Asset data graphs are not able to handle correctly the transition between one day and the next. This is now resolved.

	Plugins

	New Features:

	The existing set of OMF north plugins have been rationalised and replaced by a single OMF north plugin that is able to support the connector rely, PI Web API, EDS and OCS.

	When a Modbus TCP connection is closed by the remote end we fail to read a value, we then reconnect and move on to read the next value. On device with short timeout values, smaller than the poll interval, we fail the same reading every time and never get a value for that reading. The behaviour has been modified to allow us to retry reading the original value after re-establishing the connection.

	The OMF north plugin has been updated to support the released version of the OSIsoft EDS product as a destination for data.

	New functionality has been added to the north data to PI plugin when using PI Web API that allows the location in the PI Server AF hierarchy to be defined. A default location can be set and an override based on the asset name or metadata within the reading. The data may also be placed in multiple locations within the AF hierarchy.

	A new notification delivery plugin has been added that allows a north task to be triggered to send data for a period of time either side of the notification trigger event. This allows conditional forwarding of large amounts of data when a trigger event occurs.

	The asset notification delivery plugin has been updated to allow creation of new assets both for notifications that are triggered and/or cleared.

	The rate filter now allows the termination of sending full rate data either by use of an expression or by specifying a time in milliseconds.

	A new simple Python filter has been added that calculates an exponential moving average,

	Some typos in the OPCUA south and north plugin configuration have been fixed.

	The OPCUA north plugin has been updated to support nested reading objects correctly and also to allow a name to be set for the OPCUA server. These have also been some stability fixes in the underlying OPCUA layer used by this and the south OPCUA plugin.

	The modbus map configuration now supports byte swapping and word swapping by use of the {{swap}} property of the map. This may take the values {{bytes}}, {{words}} or {{both}}.

	The people detection machine learning plugin now supports RTSP streams as input.

	The option list items in the OMF plugin have been updated to make them more user friendly and descriptive.

	The threshold notification rule has been updated such that the unused fields in the configuration now correctly grey out in the GUI dependent upon the setting of the window type or single item asset validation.

	The configuration of the OMF north plugin for connecting to the PI Server has been improved to give the user better feedback as to what elements are valid based on choice of connection method and security options chosen.

	Support has been added for simple Python code to be entered into a filter that does not require all of the support code. This is designed to allow a user to very quickly develop filters with limited programming.

	Support has been added for filters written entirely in Python, these are full featured filters as supported by the C++ filtering mechanism and include dynamic reconfiguration.

	The foglamp-filter-expression filter has been modified to better deal with streams which contain multiple assets. It is now possible to use the syntax <assetName>.<datapointName> in an expression in addition to the previous <datapointName>. The result is that if two assets in the data stream have the same data point names it is now possible to differentiate between them.

	A new plugin to collect variables from Beckhoff PLC’s has been written. The plugin uses the TwinCAT 2 or TwinCAT 3 protocols to collect specified variable from the running PLC.

	Bug Fix:

	An issue in the sending of data to the PI server with large values has been resolved.

	The playback south plugin was not correctly replaying timestamps within the file, this has now been resolved.

	Use of the asset filter in a north task could result in the north task terminating. This has now resolved.

	A small memory leak in the south service statistics handling code was impacting the performance of the south service, this is now resolved.

	An issue has been discovered in the Flir camera plugin with the validity attribute of the spot temperatures, this has now been resolved.

	It was not possible to send data for the same asset from two different FogLAMP’s into the PI Server using PI Web API, this has now been resolved.

	The filter FogLAMP RMS Trigger was not able to be dynamically reconfigured, this has now been resolved.

	If a filter in the north sending process increased the number of readings it was possible that the limit of the number of readings sent in a single block . The sending process will now ensure this can not happen.

	RMS filter plugin was not able to be dynamically reconfigured, this has now been resolved.

	The HTTP South plugin that is used to receive data from another FogLAMP instance may fail with some combinations of filters applied to the service. This issue has now been resolved.

	The rule filter may give errors if expressions have variables not satisfied in the reading data. Under some circumstances it has been seen that the filter fails to process data after giving this error. This has been resolved by changes to make the rate filter more robust.

	Blank values for asset names in the south service may cause the service to become unresponsive. Blank asset names have now been correctly detected, asset names are required configuration values.

	A new version of the driver software for the USB-4704 Data Acquisition Module has been released, the plugin has been updated to use this driver version.

	The OPCUA North plugin might report incorrect counts for sent readings on some platforms, this has now been resolved.

	The simple Python filter plugin was not adding correct asset tracking data, this has now been updated.

	An issue with the asset filter failing when incorrect configuration was present has bene resolved.

	The benchmark plugin now enforces a minimum number of asset of 1.

	The OPCUA plugins are now available on the Raspberry Pi Buster platform.

	Errors that prevented the use of the Postgres storage plugin have been resolved.

v1.7.0

Release Date: 2019-08-15

	FogLAMP Core

	New Features:

	Added support for Raspbian Buster

	Additional, optional flow control has been added to the south service to prevent it from overwhelming the storage service. This is enabled via the throttling option in the south service advanced configuration.

	The mechanism for including JSON configuration in C++ plugins has been improved and the macros for the inline coding moved to a standard location to prevent duplication.

	An option has been added that allows the system to be updated to the latest version of the system packages prior to installing a new plugin or component.

	FogLAMP now supports password type configuration items. This allows passwords to be hidden from the user in the user interface.

	A new feature has been added that allows the logs of plugin or other package installation to be retrieved.

	Installation logs for package installations are now retained and available via the REST API.

	A mechanism has been added that allows plugins to be marked as deprecated prior to the removal of these plugins in future releases. Running a deprecated plugin will result in a warning being logged, but otherwise the plugin will operate as normal.

	The FogLAMP REST API has been updated to add a new entry point that will allow a plugin to be updated from the package repository.

	An additional API has been added to fetch the set of installed services within a FogLAMP installation.

	An API has been added that allows the caller to retrieve the list of plugins that are available in the FogLAMP package repository.

	The /foglamp/plugins REST API has been extended to allow plugins to be installed from an APT/RPM repository.

	Addition of support for hybrid plugins. A hybrid plugin is a JSON file that defines another plugin to load along with some default configuration for that plugin. This gives a means to create a new plugin by customising the configuration of an existing plugin. An example might be a plugin for a specific modbus device type that uses the generic modbus plugin and a predefined modbus map.

	The notification service has been improved to allow the re-trigger time of a notification to be defined by the user on a per notification basis.

	A new environment variable, FOGLAMP_PLUGIN_PATH has been added to allow plugins to be stored in multiple locations or locations outside of the usual FogLAMP installation directory.

	Added support for FOGLAMP_PLUGIN_PATH environment variable, that would be used for searching additional directory paths for plugins/filters to use with FogLAMP.

	FogLAMP packages for the Google Coral Edge TPU development board have been made available.

	Support has been added to the OMF north plugin for the PI Web API OMF endpoint. The PI Server functionality to support this is currently in beta test.

	Bug Fix/Improvements:

	An issue with the notification service becoming unresponsive on the Raspberry Pi Buster release has been resolved.

	A debug message was being incorrectly logged as an error when adding a Python south plugin. The message level has now been corrected.

	A problem whereby not all properties of configuration items are updated when a new version of a configuration category is installed has been fixed.

	The notification service was not correctly honouring the notification types for one shot, toggled and retriggered notifications. This has now be bought in line with the documentation.

	The system log was becoming flooded with messages from the plugin discovery utility. This utility now logs at the correct level and only logs errors and warning by default.

	Improvements to the REST API allow for selective sets of statistic history to be retrieved. This reduces the size of the returned result set and improves performance.

	The order in which filters are shutdown in a pipeline of filters has been reversed to resolve an issue regarding releasing Python interpreters, under some circumstances shutdowns of later filters would fail if multiple Python filters were being used.

	The output of the foglamp status command was corrupt, showing random text after the number of seconds for which foglamp has been up. This has now been resolved.

	GUI

	New Features:

	A new log option has been added to the GUI to show the logs of package installations.

	It is now possible to edit Python scripts directly in the GUI for plugins that load Python snippets.

	A new log retrieval option has been added to the GUI that will show only notification delivery events. This makes it easier for a user to see what notifications have been sent by the system.

	The GUI asset graphs have been improved such that multiple tabs are now available for graphing and tabular display of asset data.

	The GUI menu has been reordered to move the Notifications entry below the South and North entries.

	Support has been added to the FogLAMP GUI for entry of password fields. Data is obfuscated as it is entered or edited.

	The GUI now shows plugin name and version for each north task defined.

	The GUI now shows the plugin name and version for each south service that is configured.

	The GUI has been updated such that it can install new plugins from the FogLAMP package repository for south services and north tasks. A list of available packages from the repository is displayed to allow the user to pick from that list. The FogLAMP instance must have connectivity tot he package repository to allow this feature to succeed.

	The GUI now supports using certificates to authenticate with the FogLAMP instance.

	Bug Fix/Improvements:

	Improved editing of JSON configuration entities in the configuration editor.

	Improvements have been made to the asset browser graphs in the GUI to make better use of the available space to show the graph itself.

	The GUI was incorrectly showing FogLAMP as down in certain circumstances, this has now been resolved.

	An issue in the edit dialog for the north plugin which sometimes prevented the enabled state from being correctly modified has been resolved.

	Exported CSV data from the GUI would sometimes be missing column headers, these are now always present.

	The exporting of data as a CSV file in the GUI has been improved such that it no longer outputs the readings as a block of JSON, but rather individual columns. This allows the data to be imported into a spreadsheet with ease.

	Missing help text has been added for notification trigger and enabled elements.

	A number of issues in the filter configuration editor have been resolved. These issues meant that sometimes new values were not honoured or when changes were made with multiple filters in a chain only one filter would be updated.

	Under some rare circumstances the GUI asset graph may show incorrect dates, this issue has now been resolved.

	The FogLAMP GUI build and start commands did not work on Windows platforms and preventing the running on those platforms. This has now been resolved and the FogLAMP GUI can be built and run on Windows platforms.

	The GUI was not correctly interpreting the value of the readonly attribute of configuration items when the value was anything other than true. This has been resolved.

	The FogLAMP GUI RPM package had an error that caused installation to fail on some systems, this is now resolved.

	Plugins

	New Features:

	A new filter has been created that looks for changes in values and only sends full rate data around the time of those changes. At other times the filter can be configured to send reduced rate averages of the data.

	A new rule plugin has been implemented that will create notifications if the value of a data point moves more than a defined percentage from the average for that data point. A moving average for each data point is calculated by the plugin, this may be a simple average or an exponential moving average.

	A new south plugin has been created that supports the DNP3 protocol.

	A south plugin has been created based on the Google TensorFlow people detection model. It uses a live feed from a video camera and returns data regarding the number of people detected and the position within the frame.

	A south plugin based on the Google TensorFlow demo model for people recognition has been created. The plugin reads an image from a file and returns the people co-ordinates of the people it detects within the image.

	A new north plugin has been added that creates an OPCUA server based on the data ingested by the FogLAMP instance.

	Support has been added for a Flir Thermal Imaging Camera connected via Modbus TCP. Both a south plugin to gather the data and a filter plugin, to clean the data, have been added.

	A new south plugin has been created based on the Google TensorFlow demo model that accepts a live feed from a Raspberry Pi camera and classifies the images.

	A new south plugin has been created based on the Google TensorFlow demo model for object detection. The plugin return object count, name position and confidence data.

	The change filter has been made available on CentOS and RedHat 7 releases.

	Bug Fix/Improvements:

	Support for reading floating point values in a pair of 16 bit registers has been added to the modbus plugin.

	Improvements have been made to the performance of the modbus plugin when large numbers of contiguous registers are read. Also the addition of support for floating point values in modbus registers.

	Flir south service has been modified to support the Flir camera range as currently available, i.e. a maximum of 10 areas as opposed to the 20 that were previously supported. This has improved performance, especially on low performance platforms.

	The python35 filter plugin did not allow the Python code to add attributes to the data. This has now been resolved.

	The playback south plugin did not correctly take the timestamp data from he CSV file. An option is now available that will allow this.

	The rate filter has been enhanced to accept a list of assets that should be passed through the filter without having the rate of those assets altered.

	The filter plugin python35 crashed on the Buster release on the Raspberry Pi, this has now been resolved.

	The FFT filter now enforces that the number of samples must be a power of 2.

	The ThingSpeak north plugin was not updated in line with changes to the timestamp handling in FogLAMP, this resulted in a crash when it tried to send data to ThingSpeak. This has been resolved and the cause of the crash also fixed such that now an error will be logged rather than the task crashing.

	The configuration of the simple expression notification rule plugin has been simplified.

	The DHT 11 plugin mistakenly had a dependency on the Wiring PI package. This has now been removed.

	The system information plugin was missing a dependency that would cause it to fail to install on systems that did not already have the package it was depend on installed. This has been resolved.

	The phidget south plugin reconfiguration method would crash the service on occasions, this has now been resolved.

	The notification service would sometimes become unresponsive after calling the notify-python35 plugin, this has now been resolved.

	The configuration options regarding notification evaluation of single items and windows has been improved to make it less confusing to end users.

	The OverMax and UnderMin notification rules have been combined into a single threshold rule plugin.

	The OPCUA south plugin was incorrectly reporting itself as the upcua plugin. This is now resolved.

	The OPCUA south plugin has been updated to support subscriptions both using browse names and Node Id’s. Node ID is now the default subscription mechanism as this is much higher performance than traversing the object tree looking at browse names.

	Shutting down the OPCUA service when it has failed to connect to an OPCUA server, either because of an incorrect configuration or the OPCUA server being down resulted in the service crashing. The service now shuts down cleanly.

	In order to install the foglamp-south-modbus package on RedHat Enterprise Linux or CentOS 7 you must have configured the epel repository by executing the command:

sudo yum install epel-release

	A number of packages have been renamed in order to obtain better consistency in the naming and to facilitate the upgrade of packages from the API and graphical interface to FogLAMP. This will result in duplication of certain plugins after upgrading to the release. This is only an issue of the plugins had been previously installed, these old plugin should be manually removed form the system to alleviate this problem.

The plugins involved are,

	foglamp-north-http Vs foglamp-north-http-north

	foglamp-south-http Vs foglamp-south-http-south

	foglamp-south-Csv Vs foglamp-south-csv

	foglamp-south-Expression Vs foglamp-south-expression

	foglamp-south-dht Vs foglamp-south-dht11V2

	foglamp-south-modbusc Vs foglamp-south-modbus

v1.6.0

Release Date: 2019-05-22

	FogLAMP Core

	New Features:

	The scope of the FogLAMP certificate store has been widen to allow it to store .pem certificates and keys for accessing cloud functions.

	The creation of a Docker container for FogLAMP has been added to the packaging options for FogLAMP in this version of FogLAMP.

	Red Hat Enterprise Linux packages have been made available from this release of FogLAMP onwards. These packages include all the applicable plugins and notification service for FogLAMP.

	The FogLAMP API now supports the creation of configuration snapshots which can be used to create configuration checkpoints and rollback configuration changes.

	The FogLAMP administration API has been extended to allow the installation of new plugins via API.

	Improvements/Bug Fix:

	A bug that prevents multiple FogLAMP’s on the same network being discoverable via multicast DNS lookup has been fixed.

	Set, unset optional configuration attributes

	GUI

	New Features:

	The FogLAMP Graphical User Interface now has the ability to show sets of graphs over a time period for data such as the spectrum analysis produced but the Fast Fourier transform filter.

	The FogLAMP Graphical User Interface is now available as an RPM file that may be installed on Red Hat Enterprise Linux or CentOS.

	Improvements/Bug Fix:

	Improvements have been made to the FogLAMP Graphical User Interface to allow more control of the time periods displayed in the graphs of asset values.

	Some improvements to screen layout in the FogLAMP Graphical User Interface have been made in order to improve the look and reduce the screen space used in some of the screens.

	Improvements have been made to the appearance of dropdown and other elements with the FogLAMP Graphical User Interface.

	Plugins

	
	New Features:

	
	A new threshold filter has been added that can be used to block onward transmission of data until a configured expression evaluates too true.

	The Modbus RTU/TCP south plugin is now available on CentOS 7 and RHEL 7.

	A new north plugin has been added to allow data to be sent the Google Cloud Platform IoT Core interface.

	The FFT filter now has an option to output raw frequency spectra. Note this can not be accepted into all north bound systems.

	Changed the release status of the FFT filter plugin.

	Added the ability in the modbus plugin to define multiple registers that create composite values. For example two 16 bit registers can be put together to make one 32 bit value. This is does using an array of register values in a modbus map, e.g. {“name”:”rpm”,”slave”:1,”register”:[33,34],”scale”:0.1,”offset”:0}. Register 33 contains the low 16 its of the RPM and register 34 the high 16 bits of the RPM.

	Addition of a new Notification Delivery plugin to send notifications to a Google Hangouts chatroom.

	A new plugin has been created that uses machine learning based on Google’s TensorFlow technology to classify image data and populate derived information the north side systems. The current TensorFlow model in use will recognise hard written digits and populate those digits. This plugins is currently a proof of concept for machine learning.

	
	Improvements/Bug Fix:

	
	Removal of unnecessary include directive from Modbus-C plugin.

	Improved error reporting for the modbus-c plugin and added documentation on the configuration of the plugin.

	Improved the subscription handling in the OPCUA south plugin.

	Stability improvements have been made to the notification service, these related to the handling of dynamic reconfigurations of the notifications.

	Removed erroneous default for script configuration option in Python35 notification delivery plugin.

	Corrected description of the enable configuration item.

v1.5.2

Release Date: 2019-04-08

	FogLAMP Core

	
	New Features:

	
	Notification service, notification rule and delivery plugins

	Addition of a new notification delivery plugin that will create an asset reading when a notification is delivered. This can then be sent to any system north of the FogLAMP instance via the usual mechanisms

	Bulk insert support for SQLite and Postgres storage plugins

	
	Enhancements / Bug Fix:

	
	Performance improvements for SQLite storage plugin.

	Improved performance of data browsing where large datasets have been acquired

	Optimized statistics history collection

	Optimized purge task

	The readings count shown on GUI and south page and corresponding API endpoints now shows total readings count and not what is currently buffered by FogLAMP. So these counts don’t reduce when purge task runs

	Static data in the OMF plugin was not being correctly taken from the plugin configuration

	Reduced the number of informational log messages being sent to the syslog

	GUI

	
	New Features:

	
	Notifications UI

	
	Bug Fix:

	
	Backup creation time format

v1.5.1

Release Date: 2019-03-12

	FogLAMP Core

	Bug Fix: plugin loading errors

	GUI

	Bug Fix: uptime shows up to 24 hour clock only

v1.5.0

Release Date: 2019-02-21

	FogLAMP Core

	Performance improvements and Bug Fixes

	Introduction of Safe Mode in case FogLAMP is accidentally configured to generate so much data that it is overwhelmed and can no longer be managed.

	GUI

	re-organization of screens for Health, Assets, South and North

	bug fixes

	South

	Many Performance improvements, including conversion to C++

	Modbus plugin

	many other new south plugins

	North

	Compressed data via OMF

	Kafka

	Filters: Perform data pre-processing, and allow distributed applications to be built on FogLAMP.

	Delta: only send data upon change

	Expression: run a complex mathematical expression across one or more data streams

	Python: run arbitrary python code to modify a data stream

	Asset: modify Asset metadata

	RMS: Generate new asset with Root Mean Squared and Peak calculations across data streams

	FFT (beta): execute a Fast Fourier Transform across a data stream. Valuable for Vibration Analysis

	Many others

	Event Notification Engine (beta)

	Run rules to detect conditions and generate events at the edge

	Default Delivery Mechanisms: email, external script

	Fully pluggable, so custom Rules and Delivery Mechanisms can be easily created

	Debian Packages for All Repo’s

v1.4.1

Release Date: 2018-10-10

v1.4.0

Release Date: 2018-09-25

v1.3.1

Release Date: 2018-07-13

Fixed Issues

	Open File Descriptors

	open file descriptors: Storage service did not close open files, leading to multiple open file descriptors

v1.3

Release Date: 2018-07-05

New Features

	Python version upgrade

	python 3 version: The minimal supported python version is now python 3.5.3.

	aiohttp python package version upgrade

	aiohttp package version: aiohttp (version 3.2.1) and aiohttp_cors (version 0.7.0) is now being used

	Removal of south plugins

	coap: coap south plugin was moved into its own repository https://github.com/foglamp/foglamp-south-coap

	http: http south plugin was moved into its own repository https://github.com/foglamp/foglamp-south-http

Known Issues

	Issues in Documentation

	plugin documentation: testing FogLAMP requires user to first install southbound plugins necessary (CoAP, http)

v1.2

Release Date: 2018-04-23

New Features

	Changes in the REST API

	ping Method: the ping method now returns uptime, number of records read/sent/purged and if FogLAMP requires REST API authentication.

	Storage Layer

	Default Storage Engine: The default storage engine is now SQLite. We provide a script to migrate from PostgreSQL in 1.1.1 version to 1.2. PostgreSQL is still available in the main repository and package, but it will be removed to an operate repository in future versions.

	Admin and Maintenance Scripts

	foglamp status: the command now shows what the ping REST method provides.

	setenv script: a new script has been added to simplify the user interaction. The script is in $FOGLAMP_ROOT/extras/scripts and it is called setenv.sh.

	foglamp service script: a new service script has been added to setup FogLAMP as a service. The script is in $FOGLAMP_ROOT/extras/scripts and it is called foglamp.service.

Known Issues

	Issues in the REST API

	asset method response: the asset method returns a JSON object with asset code named asset_code instead of assetCode

	task method response: the task method returns a JSON object with unexpected element "exitCode"

v1.1.1

Release Date: 2018-01-18

New Features

	Fixed aiohttp incompatibility: This fix is for the incompatibility of aiohttp with yarl, discovered in the previous version. The issue has been fixed.

	Fixed avahi-daemon issue: Avahi daemon is a pre-requisite of FogLAMP, FogLAMP can now run as a snap or build from source without avahi daemon installed.

Known Issues

	PostgreSQL with Snap: the issue described in version 1.0 still persists, see Known Issues in v1.0.

v1.1

Release Date: 2018-01-09

New Features

	Startup Script:

	foglamp start script now checks if the Core microservice has started.

	foglamp start creates a core.err file in $FOGLAMP_DATA and writes the stderr there.

Known Issues

	Incompatibility between aiohttp and yarl when FogLAMP is built from source: in this version we use aiohttp 2.3.6 (check here). This version is incompatible with updated versions of yarl (0.18.0+). If you intend to use this version, change the requirements for aiohttp for version 2.3.8 or higher.

	PostgreSQL with Snap: the issue described in version 1.0 still persists, see Known Issues in v1.0.

v1.0

Release Date: 2017-12-11

Features

	All the essential microservices are now in place: Core, Storage, South, North.

	Storage plugins available in the main repository:

	Postgres: The storage layer relies on PostgreSQL for data and metadata

	South plugins available in the main repository:

	CoAP Listener: A CoAP microservice plugin listening to client applications that send data to FogLAMP

	North plugins available in the main repository:

	OMF Translator: A task plugin sending data to OSIsoft PI Connector Relay 1.0

Known Issues

	Startup Script: foglamp start does not check if the Core microservice has started correctly, hence it may report that “FogLAMP started.” when the process has died. As a workaround, check with foglamp status the presence of the FogLAMP microservices.

	Snap Execution on Raspbian: there is an issue on Raspbian when the FogLAMP snap package is used. It is an issue with the snap environment, it looks for a shared object to preload on Raspian, but the object is not available. As a workaround, a superuser should comment a line in the file /etc/ld.so.preload. Add a # at the beginning of this line: /usr/lib/arm-linux-gnueabihf/libarmmem.so. Save the file and you will be able to immediately use the snap.

	OMF Translator North Plugin for FogLAMP Statistics: in this version the statistics collected by FogLAMP are not sent automatically to the PI System via the OMF Translator plugin, as it is supposed to be. The issue will be fixed in a future release.

	Snap installed in an environment with an existing version of PostgreSQL: the FogLAMP snap does not check if another version of PostgreSQL is available on the machine. The result may be a conflict between the tailored version of PostgreSQL installed with the snap and the version of PostgreSQL generally available on the machine. You can check if PostgreSQL is installed using the command sudo dpkg -l | grep 'postgres'. All packages should be removed with sudo dpkg --purge <package>.

 Downloads

Downloads

Packages

Packages for a number of different Linux platforms are available for both Intel and Arm architectures via the Dianomic web site’s download page.

	Downloads Page

Download/Clone from GitHub

FogLAMP and the FogLAMP tools are on GitHub. You can view and download them here:

	FogLAMP: This is the main project for the FogLAMP platform.
 https://github.com/foglamp/foglamp

	FogLAMP GUI: This is an experimental GUI that connects to the FogLAMP REST API to configure and administer the platform and to retrieve the data buffered in it.
 https://github.com/foglamp/foglamp-gui

There are many south, north, and filter plugins available on github:
 https://github.com/foglamp

 Kerberos authentication

Kerberos authentication

Introduction

The bundled OMF north plugin in FogLAMP can use a number of different authentication schemes when communicating with the various OSIsoft products. The PI Web API method in the OMF [https://omf-docs.osisoft.com/] plugin supports the use of a Kerberos scheme.

The FogLAMP requirements.sh script installs the Kerberos client to allow the integration with what in the specific terminology is called KDC (the Kerberos server).

PI-Server as the North endpoint

The OSI Connector Relay allows token authentication while PI Web API supports Basic and Kerberos.

There could be more than one configuration to allow the Kerberos authentication,
the easiest one is the Windows server on which the PI-Server is executed act as the Kerberos server also.

The Windows Active directory should be installed and properly configured for allowing the Windows server to authenticate Kerberos requests.

North plugin

The North plugin has a set of configurable options that should be changed, using either the FogLAMP API or the FogLAMP GUI,
to select the Kerberos authentication.

The North plugin supports the configurable option PIServerEndpoint for allowing to select the target among:

	Connector Relay

	PI Web API

	Edge Data Store

	OSIsoft Cloud Services

The PIWebAPIAuthenticationMethod option permits to select the desired authentication among:

	anonymous

	basic

	kerberos

The Kerberos authentication requires a keytab file, the PIWebAPIKerberosKeytabFileName option specifies the name of the file expected under the directory:

${FOGLAMP_ROOT}/data/etc/kerberos

NOTE:

	A keytab is a file containing pairs of Kerberos principals and encrypted keys (which are derived from the Kerberos password). A keytab file allows to authenticate to various remote systems using Kerberos without entering a password.

the AFHierarchy1Level option allows to specific the first level of the hierarchy that will be created into the Asset Framework and will contain the information for the specific
North plugin.

FogLAMP server configuration

The server on which FogLAMP is going to be executed needs to be properly configured to allow the Kerberos authentication.

The following steps are needed:

	IP Address resolution for the KDC

	Kerberos client configuration

	Kerberos keytab file setup

IP Address resolution of the KDC

The Kerberos server name should be resolved to the corresponding IP Address, editing the /etc/hosts is one of the possible and the easiest way, sample row to add:

192.168.1.51 pi-server.dianomic.com pi-server

try the resolution of the name using the usual ping command:

$ ping -c 1 pi-server.dianomic.com

PING pi-server.dianomic.com (192.168.1.51) 56(84) bytes of data.
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=1 ttl=128 time=0.317 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=2 ttl=128 time=0.360 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=3 ttl=128 time=0.455 ms

NOTE:

	the name of the KDC should be the first in the list of aliases

Kerberos client configuration

The server on which FogLAMP runs act like a Kerberos client and the related configuration file should be edited for allowing the proper Kerberos server identification.
The information should be added into the /etc/krb5.conf file in the corresponding section, for example:

[libdefaults]
 default_realm = DIANOMIC.COM

[realms]
 DIANOMIC.COM = {
 kdc = pi-server.dianomic.com
 admin_server = pi-server.dianomic.com
 }

Kerberos keytab file

The keytab file should be generated on the Kerberos server and copied into the FogLAMP server in the directory:

${FOGLAMP_DATA}/etc/kerberos

NOTE:

	if FOGLAMP_DATA is not set its value should be $FOGLAMP_ROOT/data.

The name of the file should match the value of the North plugin option PIWebAPIKerberosKeytabFileName, by default piwebapi_kerberos_https.keytab

$ ls -l ${FOGLAMP_DATA}/etc/kerberos
-rwxrwxrwx 1 foglamp foglamp 91 Jul 17 09:07 piwebapi_kerberos_https.keytab
-rw-rw-r-- 1 foglamp foglamp 199 Aug 13 15:30 README.rst

The way the keytab file is generated depends on the type of the Kerberos server, in the case of Windows Active Directory this is an sample command:

ktpass -princ HTTPS/pi-server@DIANOMIC.COM -mapuser Administrator@DIANOMIC.COM -pass Password -crypto AES256-SHA1 -ptype KRB5_NT_PRINCIPAL -out C:\Temp\piwebapi_kerberos_https.keytab

Troubleshooting the Kerberos authentication

	check the North plugin configuration, a sample command

curl -s -S -X GET http://localhost:8081/foglamp/category/North_Readings_to_PI | jq ".|{URL,"PIServerEndpoint",PIWebAPIAuthenticationMethod,PIWebAPIKerberosKeytabFileName,AFHierarchy1Level}"

	check the presence of the keytab file

$ ls -l ${FOGLAMP_ROOT}/data/etc/kerberos
-rwxrwxrwx 1 foglamp foglamp 91 Jul 17 09:07 piwebapi_kerberos_https.keytab
-rw-rw-r-- 1 foglamp foglamp 199 Aug 13 15:30 README.rst

	verify the reachability of the Kerberos server (usually the PI-Server) - Network reachability

$ ping pi-server.dianomic.com
PING pi-server.dianomic.com (192.168.1.51) 56(84) bytes of data.
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=1 ttl=128 time=5.07 ms
64 bytes from pi-server.dianomic.com (192.168.1.51): icmp_seq=2 ttl=128 time=1.92 ms

Kerberos reachability and keys retrieval

$ kinit -p HTTPS/pi-server@DIANOMIC.COM
Password for HTTPS/pi-server@DIANOMIC.COM:
$ klist
Ticket cache: FILE:/tmp/krb5cc_1001
Default principal: HTTPS/pi-server@DIANOMIC.COM

Valid starting Expires Service principal
09/27/2019 11:51:47 09/27/2019 21:51:47 krbtgt/DIANOMIC.COM@DIANOMIC.COM
 renew until 09/28/2019 11:51:46
$

Kerberos authentication on RedHat/CentOS

RedHat and CentOS version 7 provide by default an old version of curl and the related libcurl
and it does not support Kerberos, output of the curl provided by CentOS:

$ curl -V
curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.36 zlib/1.2.7 libidn/1.28 libssh2/1.4.3
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtsp scp sftp smtp smtps telnet tftp
Features: AsynchDNS GSS-Negotiate IDN IPv6 Largefile NTLM NTLM_WB SSL libz unix-sockets

The requirements.sh evaluates if the default version 7.29.0 is installed and in this case it will download the sources, build and install
the version 7.65.3 to provide Kerberos authentication, output of the curl after the upgrade:

$ curl -V
curl 7.65.3 (x86_64-unknown-linux-gnu) libcurl/7.65.3 OpenSSL/1.0.2k-fips zlib/1.2.7
Release-Date: 2019-07-19
Protocols: dict file ftp ftps gopher http https imap imaps pop3 pop3s rtsp smb smbs smtp smtps telnet tftp
Features: AsynchDNS GSS-API HTTPS-proxy IPv6 Kerberos Largefile libz NTLM NTLM_WB SPNEGO SSL UnixSockets

The sources are downloaded from the curl repository curl sources [https://github.com/curl/curl/releases], the curl homepage is available at curl homepage [https://curl.haxx.se/].

 Plugin Documentation

Plugin Documentation

The following external plugins are currently available to extend the functionality of FogLAMP.

	FogLAMP South Plugins
	ABB Ability Smart Cloud Service

	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	Beckhoff TwinCAT
	Adding AMS Route

	Map Format
	Example

	Testing

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	Digiducer Vibration Sensor

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Data Translation DT9837 Series

	Edge ML Plugin
	Installation
	Part 1: Get the video feed

	Part 2: Start the Edge ML cluster

	Enviro pHAT Plugin

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	FLIR GW65 Vibration Sensors
	Creating the GW65 South Service

	Installing an MQTT Broker

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Set Point Control

	South MQTT
	Message Payload

	MQTT Sparkplug B

	MQTT South with Payload Scripting
	Configuration

	Object Policy
	Timestamp Treatment
	Time Format

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	PI Web API south Plugin
	Using the Plugin

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management

	Siemens S7 PLC
	Configuring the PLC
	Assigning an IP Address

	Enable PUT/GET operations

	Using the Plugin

	Map Format

	SenseHAT

	Simple REST with Payload Scripting
	Configuration

	Selection Method
	ID Based

	Time Based

	Request URL Handling

	Response Payload Handling

	Timestamp Treatment

	Sinusoid

	System Information

	Advantech USB-4704

	South Webcam Media Plugin
	Execution

	FogLAMP North Plugins
	OMF
	PI Web API OMF Endpoint

	EDS OMF Endpoint

	OCS OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	Graphite

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	InfluxDB Time Series Database

	InfluxDB Cloud

	Kafka Producer

	OPCUA Server
	Hierarchy Definition

	Splunk Data Collector

	ThingSpeak

	FogLAMP Filter Plugins
	Asset Filter
	Asset Rules

	Change Filter

	CSV Writer
	Execution
	Part 1: Get some south service running

	Part 2: Add the filter & attach to service

	Modes
	Periodic

	Continuous

	Cron style collection

	Cascading CSV writer filter

	Behaviour on restart and reconfigure

	How data is rotated?

	Decryption

	Delta Filter

	Down Sample Filter

	Edge ML Filter Plugin
	Installation

	Exponential Moving Average

	Event Rate Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Example

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Sigma Data Cleansing Filter

	Simple Python Filter

	Statistics Filter

	Threshold Filter
	Expressions

	Vibration Features Filter

	FogLAMP Notification Rule Plugins
	Threshold Rule

	Moving Average Rule

	Expression Rule

	Simple-Sigma Rule

	FogLAMP Notification Delivery Plugins
	Amazon Alexa Notification

	Asset Notification

	Configuration Update

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	Jira Ticket Creation
	Text Substitution

	JSON Configuration Update
	JSON Path

	Management Poll Notification
	Plugin Uses

	MQTT Notification

	Conditional Forwarding

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

	Zendesk Ticket Creation
	Text Substitution

 FogLAMP South Plugins

FogLAMP South Plugins

	ABB Ability Smart Cloud Service

	AM2315 Temperature & Humidity Sensor
	Wiring The Sensor

	Beckhoff TwinCAT
	Adding AMS Route

	Map Format
	Example

	Testing

	CC2650 SensorTag

	CoAP

	Simple CSV Plugin

	CSV Playback
	Execution

	Poll Vs Async

	Behaviour under various modes

	DHT11 (C version)

	DHT11 (Python version)

	Digiducer Vibration Sensor

	DNP3 Master Plugin
	DNP3 Out Station Testing

	Data Translation DT9837 Series

	Edge ML Plugin
	Installation
	Part 1: Get the video feed

	Part 2: Start the Edge ML cluster

	Enviro pHAT Plugin

	Expression South Plugin
	Expression Support

	Flir AX8 Thermal Imaging Camera

	FLIR GW65 Vibration Sensors
	Creating the GW65 South Service

	Installing an MQTT Broker

	South HTTP
	JSON Payload

	INA219 Voltage & Current Sensor
	Wiring The Sensor

	Lathe Simulation
	Configuring the PLC

	Modbus South Plugin
	Configuration Parameters
	Register Map

	Example Maps

	Set Point Control

	South MQTT
	Message Payload

	MQTT Sparkplug B

	MQTT South with Payload Scripting
	Configuration

	Object Policy
	Timestamp Treatment
	Time Format

	OPC/UA South Plugin
	Subscriptions
	Configuration examples

	Person Detection Plugin
	Installation

	PI Web API south Plugin
	Using the Plugin

	Playback Plugin
	Picking Columns

	PT100 Temperature Sensor
	Wiring The Sensor

	Random

	Random Walk

	OPC/UA Safe & Secure South Plugin
	Subscriptions
	Subscription examples

	Certificate Management

	Siemens S7 PLC
	Configuring the PLC
	Assigning an IP Address

	Enable PUT/GET operations

	Using the Plugin

	Map Format

	SenseHAT

	Simple REST with Payload Scripting
	Configuration

	Selection Method
	ID Based

	Time Based

	Request URL Handling

	Response Payload Handling

	Timestamp Treatment

	Sinusoid

	System Information

	Advantech USB-4704

	South Webcam Media Plugin
	Execution

 ABB Ability Smart Cloud Service

ABB Ability Smart Cloud Service

The foglamp-south-abb plugin is designed to pull data from the ABB Ability™ Smart Sensor Cloud into FogLAMP. It pulls data for a list of ABB assets into the local FogLAMP system at a rate defined for the service.

To create a south service with the ABB plugin

	Click on South in the left hand menu bar

	Select ABB from the plugin list

	Name your service and click Next

	[image: abb_01]

	Configure the plugin

	ABB Assets: A list of the assets in the ABB cloud service that should be read. This is a JSON document with an array called assets which contains the assets name as strings.

	ABB Service: The hostname of the ABB service to which to connect. Usually this is the default api.smartsensor.abb.com.

	Username: The ABB cloud user name.

	Auth. Key: The authentication key that has been created in the ABB cloud for the given username.

	Asset Structure: This defines how the FogLAMP assets that will be created should be organized.

	[image: abb_02]

	Single Asset: A single asset in the ABB cloud will be stored as a single asset in FogLAMP with the same name as the ABB asset. Within each FogLAMP asset a data point will be created for each data value within the asset using the ABB measurement type name.

	Group Assets: An asset will be created for each group of sensors for each asset within the ABB cloud. The asset will be named <ABB asset>_<group name>. Within each FogLAMP asset a data point will be created for each data value within the group using the ABB measurement type name.

	Individual Assets: An asset will be created for each data item for each ABB cloud asset. The asset will be named <ABB asset>_<item name>.

 AM2315 Temperature & Humidity Sensor

AM2315 Temperature & Humidity Sensor

[image: ../../_images/am2315_1.jpg]
The foglamp-south-am2315 is a south plugin for a temperature and humidity sensor. The sensor connects via the I2C bus and can provide temperature data in the range -40oC to +125oC with an accuracy of 0.1oC.

The plugin will produce a single asset that has two data points; temperature and humidity.

Note

The AM2315 is only available on the Raspberry Pi as it requires an I2C bus connection

To create a south service with the AM2315 plugin

	Click on South in the left hand menu bar

	Select am2315 from the plugin list

	Name your service and click Next

	[image: am2315_2]

	Configure the plugin

	Asset Name: The name of the asset that will be created. To help when multiple AM2315 sensors are used a %M may be added to the asset name. This will be replaced with the I2C address of the sensor.

	I2C Address: The I2C address of the sensor, this allows multiple sensors to be added to the same I2C bus.

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The following table details the four connections that must be made from the sensor to the Raspberry Pi GPIO connector.

	Colour

	Name

	GPIO Pin

	Description

	Red

	VDD

	Pin 2 (5V)

	Power (3.3V - 5V)

	Yellow

	SDA

	Pin 3 (SDA)

	Serial Data

	Black

	GND

	Pin 6 (GND)

	Ground

	White

	SCL

	Pin 5 (SCL)

	Serial Clock

 Beckhoff TwinCAT

Beckhoff TwinCAT

The foglamp-south-beckhoff plugin is a plugin that allows collection of data from Beckhoff PLC’s using the TwinCAT 2 or TwinCAT 3 protocols. It utilises the ADS library to allow updates the the values held within the PLC to be captured in FogLAMP and sent onward as with any other data in FogLAMP.

The plugin uses a subscription model to register for changes to variables within the PLC and each of these becomes a data point in the asset that is created within FogLAMP.

To create a south service with the Beckhoff TwinCAT plugin

	Click on South in the left hand menu bar

	Select Beckhoff from the plugin list

	Name your service and click Next

	[image: beckhoff_1]

	Configure the plugin

	Asset Name: The default asset name that is used for the data that is extracted from the PLC if the map does not define an explicit asset name.

	EtherCAT Server: The hostname or IP address of the ADS master, this is the IP address of the Beckhoff PLC.

	Remote NetId: The Beckhoff netId of the PLC. This is normally the IP address of the PLC with .1.1 appended to it.

	Protocol: Define if the Automatic, TwinCAT 2 or TwinCAT 3 protocol is to be used. If Automatic is chosen the plugin will attempt to determine if the PLC supports TwinCAT 2 or TwinCAT 3.

	Source NetId: The Beckhoff AMS NetId to assign to this plugin. This may be left blank, in which case an NetId will be generated from the IP address of the machine. However in some circumstances this is not acceptable or does not work correctly. A source NetId must always be provided when running within a container.

	TwinCAT Map: A JSON document that is the data mapping for the PLC. This defines what variables are to be extracted from the PLC. See below for details of the map format.

	You must also authorise the FogLAMP plugin by adding an AMS route on your PLC

Adding AMS Route

Sample AMS route:

	Name:

	MyAdsClient

	AMS Net Id:

	192.168.0.1.1.1 # Derived from the IP address of your FogLAMP

	Address:

	192.168.0.1 # The IP address of your FogLAMP

	Transport Type:

	TCP/IP

Routes can be configured using one of several different methods;

	TwinCAT Engineering:

	Go to the tree item SYSTEM/Routes and add a static route.

	TwinCAT Systray:

	Open the context menue by right click the TwinCAT systray icon. (not available on Windows CE devices)

	TC2:

	Go to Properties/AMS Router/Remote Computers. This requires a restart of TwinCAT on your PLC

	TC3:

	Go to Router/Edit routes.

	TcAmsRemoteMgr:

	Windows CE devices can be configured locally (TC2/TC3). Tool location: /Hard Disk/System/TcAmsRemoteMgr.exe. If uses TwinCAT 2 then a restart will be required after adding the AMS Route.

	IPC Diagnose:

	Beckhoff IPC’s provide a web interface for diagnose and configuration. Further information: [Beckhoff Device Manager](http://infosys.beckhoff.de/content/1033/devicemanager/index.html?id=286)

Map Format

The map is a JSON document that describes the variables to be extracted
from the PLC. The variables may be defined either by name or by group
and index id. Each variable will become a datapoint with the asset added
to FogLAMP. The map itself is a single JSON array called “items”, with
each element in the array being an object that define the variable and
what to do with it.

These objects have the following members within them

	Key

	Description

	asset

	An optional element that defines an asset code that should be used to
store the variable. If this is not given then the default asset code
for the plugin is used.

	datapoint

	The name of the datapoint into which the variable is stored within
the asset code. The datapoint name must be given for each object in
the map.

	name

	The variable name within the PLC that is extracted. This may be obtained
either by examining the PLC code that is running or by extracted from
the .TPY file for the PLC. Either name or group and index must be
given for each item in the map.

	group

	The numeric group within the PLC from which data is extracted. This
allow data to be extracted without the use of variable names. It is not
recommended for production use as it is very dependent on the layout of
the PLC code, using variable names is more robust than group and index.

	index

	The numeric index within the group from which to extract data, see above.

Example

An example TwinCAT map is should below

{
 "items": [
 {
 "datapoint": "engine",
 "name": "MAIN.engine"
 }
]
}

This is based on the simulation that is available from Beckhoff and creates a single data point within the default asset called engine. It is populates with the value of the internal PLC variable MAIN.engine. A new asset will be created and added to the FogLAMP buffer every time this variable changes.

Multiple items may be read from the PLC by adding an element for each to the items array. For example to extract the two variables MAIN.oilPressure and Main.engineSpeed from the PLC a map as shown below could be used.

{
 "items": [
 {
 "datapoint": "oilPressure",
 "name": "MAIN.oilPressure"
 },
 {
 "datapoint": "rpm",
 "name": "MAIN.engineSpeed"
 }
]
}

Testing

The easiest way to test the Beckhoff plugin is to setup a simulation
on a windows machine and run the Beckhoff PLC in simulator mode. The
Beckhoff PLC can be freely downloaded from the Beckhoff site.

https://beckhoff.co.uk/english/download/tc3-downloads.htm?id=1905053019883865

This is designed to be run on a Windows 7 machine.

You can then create some sample variables to try to link to.

Downloading the code from Beckhoff includes a simple example that can
be run that defines an engine variable, this is the example for which
the default configuration is setup for.

Note

You will need to setup a static route in the Beckhoff PLC with the AMSNetId and IP address for the plugin and the type as TCP/IP.

 CC2650 SensorTag

CC2650 SensorTag

[image: ../../_images/cc2650.jpg]
The foglamp-south-cc2650 is a plugin that connects using Bluetooth to a Texas Instruments CC2650 SensorTag. The SensorTag offers 10 sensors within a small, low powered package which may be read by this plugin and ingested into FogLAMP. These sensors include;

	ambient light

	magnetometer

	humidity

	pressure

	accelerometer

	gyroscope

	object temperature

	digital microphone

Note

The sensor requires that you have a Bluetooth low energy adapter available that supports at least BLE 4.0.

To create a south service with the CC2650 SensorTag

	Click on South in the left hand menu bar

	Select cc2650 from the plugin list

	Name your service and click Next

	[image: cc2650_1]

	Configure the plugin

	Bluetooth Address: The Bluetooth MAC address of the device

	Asset Name Prefix: A prefix to add to the asset name

	Shutdown Threshold: The time in seconds allowed for a shutdown operation to complete

	Connection Timeout: The Bluetooth connection timeout to use when attempting to connect to the device

	Temperature Sensor: A toggle to include the temperature data in the data ingested

	Temperature Sensor Name: The data point name to assign the temperature data

	Luminance Sensor: Toggle to control the inclusion of the ambient light data

	Luminance Sensor Name: The data point name to use for the luminance data

	Humidity Sensor: A toggle to include the humidity data

	Humidity Sensor Name: The data point name to use for the humidity data

	Pressure Sensor: A toggle to control the inclusion of pressure data

	Pressure Sensor Name: The name to be used for the data point that will contain the atmospheric pressure data

	Movement Sensor: A toggle that controls the inclusion of movement data gathered from the gyroscope, accelerometer and magnetometer

	Gyroscope Sensor Name: The data point name to use for the gyroscope data

	Accelerometer Sensor Name: The name of the data point that will record the accelerometer data

	Magnetometer Sensor Name: The name to use for the magnetometer data

	Battery Data: A toggle to control inclusion of the state of charge of the battery

	Battery Sensor Name: The data point name for the battery charge percentage

	Click Next

	Enable the service and click on Done

 CoAP

CoAP

The foglamp-south-coap plugin implements a passive CoAP listener that will accept data from sensors implementing the CoAP protocol. CoAP is an Internet application protocol for constrained devices to send data over the internet, it is similar to HTTP but may be run over UDP or TCP and is considerably simplified to allow implementation in small footprint devices. CoAP stands for Constrained Application Protocol.

The plugin listens for POST requests to the URI defined in the configuration. It expects the content of this PUT request to be a CBOR payload which it will expand and create assets for the items read from the CBOR payload.

To create a south service with the CoAP plugin

	Click on South in the left hand menu bar

	Select coap from the plugin list

	Name your service and click Next

	[image: coap_1]

	Configure the plugin

	Port: The port on which the CoAP plugin will listen

	URI: The URI the plugin expects to receive POST requests

	Click Next

	Enable the service and click on Done

 Simple CSV Plugin

Simple CSV Plugin

The foglamp-south-csv plugin is a simple plugin for reading comma separated variable files and injecting them as if there were sensor data. There a are a number of variants of plugin that support this functionality with varying degrees of sophistication. These may also be considered as simple examples of how to write plugin code.

This particular CSV reader support single or multi-column CSV files, without timestamps in the file. It assumes every value is a data value. If the multi-column option is not set then it will read data from the file up until a newline or a comma character and make that as single data point in an asset and return that.

If the multi-column option is selected then each column in the CSV file becomes a data point within a single asset. It is assumed that every row of the CSV file will have the same number of values.

Upon reaching the end of the file the plugin will restart sending data from the beginning of the file.

To create a south service with the csv plugin

	Click on South in the left hand menu bar

	Select Csv from the plugin list

	Name your service and click Next

	[image: csv_1]

	Configure the plugin

	Asset Name: The name of the asset that will be created

	Datapoint: The name of the data point to insert. If multi-column is selected this becomes the prefix of the name, with the column number appended to create the full name

	Multi-Column: If selected then each row of the CSV file is treated as a single asset with each column becoming a data point within that asset.

	Path Of File: The file that should be read by the CSV plugin, this may be any location within the host operating system. The FogLAMP process should have permission to read this file.

	Click Next

	Enable the service and click on Done

 CSV Playback

CSV Playback

The plugin plays a csv file inside some given directory in file system (The default being FOGLAMP_ROOT/data). It converts the columns of csv file into readings which are datapoints of an output asset.
The plugin plays readings at some configured rate.

We can also convert the columns of csv file into some other data type. For example from float to integer. The converted data will be part of reading not the CSV file.

The plugin has the ability to play the readings in either burst or continuous mode. In burst mode all readings are ingested into database at once and there is no adjustment of timestamp of a single reading. Whereas in continuous mode readings are ingested one by one and the timestamp of each reading is adjusted according to sampling rate. (For example if sampling rate is 8000 then the user_ts of every reading differs by 125 micro seconds.)

We can also copy the timestamp if present in the CSV file. This time stamp becomes the user_ts of a reading.

The plugin can also play the file in a loop which means it can start again if end of the file has reached.

The plugin can also play a file that has variable columns in every line.

[image: config1]

	
	‘assetName’: type: string default: ‘vibration’:

	The output asset that contains the readings.

	
	‘csvDirName’: type: string default: ‘FOGLAMP_DATA’:

	The directory where CSV file exists. Default is FOGLAMP_DATA or FOGLAMP_ROOT/data

	
	‘csvFileName’: type: string default: ‘’:

	CSV file name or pattern to search inside directory. Not necessarily an exact file name.
If there are multiple files matching with the pattern, then the plugin will pick the first file in
alphabetical order. If postProcessMethod is rename or delete then it will rename or delete the played
file and pick the next one and so on.

	
	‘headerMethod’: type: enumeration default: ‘do_not_skip’:

	The method for processing the header of csv file.

	skip_rows : If this is selected then the plugin will skip a given number of rows. The number of rows should be given in noOfRows config parameter given below.

	pass_in_datapoint : If this is selected then the given number of rows will be combined into a string. This string will be present inside some given datapoint. Useful in cases where we want to ingest meta data along with readings from the csv file.

	do_not_skip: This option will not take any action on the header.

	
	‘dataPointForCombine’: type: string default: ‘metadata’:

	If header method is pass_in_datapoint then it is the datapoint name
where the given number of rows will get combined.

	
	‘noOfRows’: type: integer default: ‘1’:

	No. of rows to skip or combine to single value. Used when headerMethod is either skip_rows or pass_in_datapoint.

	
	‘variableCols’: type: boolean default: ‘false’:

	It should be set true, when the columns in every row
of CSV are not fixed. For example
If you have a file like this

a,b,c

2,3,,23

4

Then you should set it true.

Note

Only one reading will be ingested at a time in this case. If you want to increase the rate then increase
readingPerSec parameter in advanced plugin configuration.

	
	‘columnMethod’: type: enumeration default: ‘pick_from_file’:

	If variable Columns is false then it indicates how columns are considered.

	pick_from_file : The columns will be picked using a row index given.

	explicit : Specify the columns inside useColumns parameter.

	
	‘autoGeneratePrefix’: type: string default: ‘column’:

	If variable Columns is set true then data points will generated using the prefix.
For example if there is row like this 1,,2 and we chose autoGeneratePrefix to be column, then we will get data points like this column_1: 1, column_3: 2. Empty values will be ignored.

	
	‘useColumns’: type: string default: ‘’:

	Format column1:type,column2:type

The data types supported are:
int, float, str, datetime, bool

We can perform three tasks with this config parameter.

	The column name will get renamed in the reading if different name is used other than present in CSV file.

	We can select a subset of columns from total columns.

	We can convert the data type of each column.

Example if the file is like the following

id,value,status

1,2.5,’OK’

2,2.7,’OK’

Then we can give

	id:int,temperature:float,status:str

The column value will be renamed to temperature.

	id:int,value:float

Only two columns will be selected here.

	id:int,temperature:int,status:str

The data type will be converted to integer. Also column will be renamed.

[image: config2]

	
	‘rowIndexForColumnNames’: type: integer default: ‘0’:

	If column method is pick_from_file then it is the index
from where column names are taken.

	
	‘ingestMode’: type: enumeration default: ‘burst’:

	Burst or continuous mode for ingestion.

	
	‘sampleRate’: type: integer default: ‘8000’:

	No of readings per second to ingest.

	
	‘burstInterval’: type: integer default: ‘1000’:

	Used for burst mode. Time interval between consecutive bursts in milliseconds.

	
	‘timestampStyle’: type: enumeration default: ‘current time’:

	Controls how to give timestamps to reading. Works in four ways:

	current time: The timestamp in the readings is whatever the local time in the machine.

	copy csv value: Copy the timestamp present in the CSV file.

	move csv value: Used when we do not want to include timestamps from files in actual readings.

	use csv sample delta: Pick the delta between two readings in the file and construct the timestamp of reading using this delta. Assuming the delta remains constant through out the file.)

	
	‘timestampCol’: type: string default: ‘’:

	The timestamp column to pick from the file. Used only when timestampStyle is not ‘current time’.

	
	‘timestampFormat’: type: string default: ‘%Y-%m-%d %H:%M:%S.%f%z’:

	The timestamp format that will be used to parse the time stamps present in the file. Used only when timestampStyle is not ‘current time’.

	
	‘ignoreNaN’: type: enumeration default: ignore:

	Pandas takes the white spaces and missing values as NaN’s. These NaN’s cause problem while ingesting into database.
It is left to the user to ensure there are no missing values in CSV file. However if the option selected is report. Then plugin will check for NaN’s and report error to user. This can serve as a way to check the CSV file for missing values. However the user has to take action on what to do with NaN values. The default action is to ignore them.
When error is reported the user must delete the south service and try again with clean CSV file.

	
	‘postProcessMethod’: type: enumeration default: ‘continue_playing’:

	It is the method to process the CSV file once all rows are ingested.
It could be:

	continue_playing

Play the file again if finished.

	delete

Delete the played file once finished.

	rename

Rename the file with suffix after playing.

	
	‘suffixName’: type: string default: ‘.tmp’:

	The suffix name for renaming the file if postProcess method is rename.

Execution

Assuming you have a csv file named vibration.csv inside FOGLAMP_ROOT/data/csv_data (Can give a pattern like vib. The plugin will search for all the files starting with vib and therefore find out the file named vibration.csv). The csv file has fixed number of columns per row. Also assuming the column names are present in the first line. The plugin will rename the file with suffix .tmp after playing. Here is the cURL command for that.

res=$(curl -sX POST http://localhost:8081/FogLAMP/service -d @- << EOF | jq '.'
{
 "name":"csv_player",
 "type":"south",
 "plugin":"csvplayback",
 "enabled":false,
 "config": {
 "assetName":{"value":"My_csv_asset"},
 "csvDirName":{"value":"FOGLAMP_DATA/csv_data"},
 "csvFileName":{"value":"vib"},
 "headerMethod":{"value":"do_not_skip"},
 "variableCols":{"value":"false"},
 "columnMethod":{"value":"pick_from_file"},
 "rowIndexForColumnNames":{"value":"0"},
 "ingestMode":{"value":"burst"},
 "sampleRate":{"value":"8000"},
 "postProcessMethod":{"value":"rename"},
 "suffixName":{"value":".tmp"}
 }
 }
 EOF
)

 echo $res

Poll Vs Async

The plugin also works in async mode. Though the default mode is poll.
The async mode is faster but suffers with memory growth when sample rate is too high for the machine configuration.

Use the following sed operation for async and start the plugin again. The second sed operation, in similar way, can be used if you want to revert back to poll mode. Restart for the plugin service is required.

plugin_path=$FOGLAMP_ROOT/python/FogLAMP/plugins/south/csvplayback/csvplayback.py
value='s/POLL_MODE=True/POLL_MODE=False/'
sudo sed -i $value $plugin_path

for reverting back to poll the commands will be
plugin_path=$FOGLAMP_ROOT/python/FogLAMP/plugins/south/csvplayback/csvplayback.py
value='s/POLL_MODE=False/POLL_MODE=True/'
sudo sed -i $value $plugin_path

Behaviour under various modes

Behaviour of CSV playback plugin

	Plugin mode

	Ingest mode

	Behaviour

	poll

	burst

	No memory growth. Resembles the way sensors give data in real life. However the timestamps of readings won’t differ by a fixed delta.

	poll

	continuous

	No memory growth. Readings differ by a constant delta. However it is slow in performance.

	async

	continuous

	Similar to poll continuous but faster. However memory growth is observed over time.

	async

	burst

	Similar to poll burst. Not used generally.

For using poll mode in continuous setting increase the readingPerSec category to the sample rate.

sampling_rate=8000
curl -sX PUT http://localhost:8081/FogLAMP/category/csv_playerAdvanced -d '{"bufferThreshold":"'"$sampling_rate"'","readingsPerSec":"'"$sampling_rate"'"}' |jq

It is advisable to increase the buffer threshold to atleast half the sample rate for good performance. (As done in above command)

 DHT11 (C version)

DHT11 (C version)

[image: ../../_images/dht111.jpg]
The foglamp-south-dht plugin implements a temperature and humidity sensor using the DHT11 sensor module. Two versions of plugins for the DHT11 are available and are used as the example for plugin development. The other DHT11 plugin is foglamp-south-dht11 and is a Python version.

The DHT11 and the associated DHT22 sensors may be used, however they have slightly different characteristics;

	
	DHT11

	DHT22

	Voltage

	3 to 5 Volts

	3 to 5 Volts

	Current

	2.5mA

	2.5mA

	Humidity Range

	0-50 % humidity 5% accuracy

	0-100% humidity 2.5% accuracy

	Temperature Range

	0-50 +/- 2 degrees C

	-40 to 80 +/- 0.5 degrees C

	Sampling Frequency

	1Hz

	0.5Hz

Note

Due to the requirement for attaching to GPIO pins this plugin is only available for the Raspberry Pi platform.

To create a south service with the DHT11 plugin

	Click on South in the left hand menu bar

	Select dht11_V2 from the plugin list

	Name your service and click Next

	[image: dht11_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	Rpi Pin: The GPIO pin on the Raspberry Pi to which the DHT11 serial pin is connected.

	Click Next

	Enable the service and click on Done

 DHT11 (Python version)

DHT11 (Python version)

[image: ../../_images/dht11.jpg]
The foglamp-south-dht11 plugin implements a temperature and humidity sensor using the DHT11 sensor module. Two versions of plugins for the DHT11 are available and are used as the example for plugin development. The other DHT11 plugin is foglamp-south-dht and is a C++ version.

The DHT11 and the associated DHT22 sensors may be used, however they have slightly different characteristics;

	
	DHT11

	DHT22

	Voltage

	3 to 5 Volts

	3 to 5 Volts

	Current

	2.5mA

	2.5mA

	Humidity Range

	0-50 % humidity 5% accuracy

	0-100% humidity 2.5% accuracy

	Temperature Range

	0-50 +/- 2 degrees C

	-40 to 80 +/- 0.5 degrees C

	Sampling Frequency

	1Hz

	0.5Hz

Note

Due to the requirement for attaching to GPIO pins this plugin is only available for the Raspberry Pi platform.

To create a south service with the DHT11 plugin

	Click on South in the left hand menu bar

	Select dht11 from the plugin list

	Name your service and click Next

	[image: dht11_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	GPIO Pin: The GPIO pin on the Raspberry Pi to which the DHT11 serial pin is connected.

	Click Next

	Enable the service and click on Done

 Digiducer Vibration Sensor

Digiducer Vibration Sensor

[image: ../../_images/digiducer.jpg]
The foglamp-south-digiducer plugin allows a Digiducer 333D01 USB Digital Accelerometer to be attached to FogLAMP for the collection of vibration data. The Digiducer is a piezoelectric accelerometer housed in a rugged enclosure complete with a data conditioning and acquisition interface that only requires a USB port on the FogLAMP device for connectivity.

The plugin allows for two modes of operation; continuous reading of the vibration data or sampled reading of the vibration data. In sampled mode the user configures a sample period and interval. The plugin will then read data for the sample period and forward it to the FogLAMP storage service. It will then pause collection for the sample interval before again collecting data. This repeats indefinitely.

To create a south service with the Digiducer

	Click on South in the left hand menu bar

	Select digiducer from the plugin list

	Name your service and click Next

	[image: digiducer_1]

	Configure the plugin

	Asset Name: The name of the asset that will be created in FogLAMP.

	Sample Rate: The rate at which data will be sampled. A number of frequencies are supported in the range 8KHz to 48KHz.

	[image: digiducer_2]

	Block size: To aid efficiency the plugin collects data in blocks, this allows the block size to be tuned. The value should be a power of 2.

	Continuous Sampling: This toggle supports the selection of continuous verses sampled collection.

	Sample Period: The duration of each sample period in seconds.

	Sample Interval: The time in seconds between each sample being taken.

	Channel: Select collection of the 10G Peak channel, the 20G Peak channel or both channels

	[image: digiducer_3]

	Click on Next

	Enable your south service and click on Done

 DNP3 Master Plugin

DNP3 Master Plugin

The foglamp-south-dnp3 allows FogLAMP to act as a DNP3 master and gather data from a DNP3 Out Station. The plugin will fetch all data types from the DNP3 Out Station and create assets for each in FogLAMP. The DNP3 plugin also handles unsolicited messages transmitted by the outstation.

	[image: dnp3]

	Asset Name prefix: An asset name prefix that is prepended to the DNP3 objects retrieved from the DNP3 outstations to create the FogLAMP asset name.

	Master link id: The master link id FogLAMP uses when implementing the DNP3 protocol.

	Outstation address: The IP address of the DNP3 Out Station to be connected.

	Outstation port: The post on the Out Station to which the connection is established.

	Outstation link Id: The Out Station link id.

	Data scan: Enable or disable the scanning of all objects and values in the Out Station. This is the Integrity Poll for all Classes.

	Scan interval: The interval between data scans of the Out Station.

	Network timeout: Timeout for fetching data from the Out Station expressed in seconds.

DNP3 Out Station Testing

The opdendnp3 package contains a demo Out Station that can be used for test purposes. After building the opendnp3 package on your machine run the demo program as follows;

$ cd opendnp3/build
$./outstation-demo

This demo application listens on any IP address, port 20001 and has link Id set to 10. It also assumes master link Id is 1. Configuring your FogLAMP plugin with these parameters should allow FogLAMP to connect to this Out Station.

Once started it logs traffic and waits for use input to send unsolicited messages:

Enter one or more measurement changes then press <enter>
c = counter, b = binary, d = doublebit, a = analog, o = octet string, 'quit' = exit

Another option is the use of a DNP3 Out Station simulator, as an example:

http://freyrscada.com/dnp3-ieee-1815-Client-Simulator.php#Download-DNP3-Development-Bundle

Once the bundle has been downloaded, the DNPOutstationSimulator.exe application under the “Simulator” folder can be installed and run on a Windows 32bit platform.

 Data Translation DT9837 Series

Data Translation DT9837 Series

[image: ../../_images/dt9837A.jpg]
The foglamp-south-dt9837 plugin is a south plugin that is designed to gather data from a Data Translation DT9873 Series DAQ.

To create a south service with the DT9837

	Click on South in the left hand menu bar

	Select dt9837 from the plugin list

	Name your service and click Next

	[image: dt9837_1]

	Configure the plugin

	Asset Name: The name of the asset that will be created with the values read from the DT9837

	Scan Rate: The rate at which each channel is read. This may be expressed as a numeric value, in which case it is the number of samples per second, or it may be expressed in KHz or MHz.

	Input Mode: Defines how the input is treated, it may be either a differential pair or a single ended value with a reference ground.

	[image: dt9837_2]

	Range: This defines the voltage range for all channels. It may be defined as a bipolar value, in which case it is expected the signal can swing between + and - the specified voltage. A uni-polar value, in which case the voltage swing is between ground and the specified voltage. Or it is a 0 to 20mA current loop.

	[image: dt9837_3]

	First Channel: The DT9837 can scan a number of channel in a single operation, these must however be adjunct channels. This option sets the lowest numbered channel to be scanned.

	Last Channel: The DT9837 can scan a number of channel in a single operation, these must however be adjunct channels. This option sets the highest numbered channel to be scanned.

	Sensitivity: This sets the sensor sensitivity for IEPE sensors attached to any of the channels.

	IEPE Ch. 0: Specifies that a IEPE compatible sensor is attached to channel 0.

	IEPE Ch. 1: Specifies that a IEPE compatible sensor is attached to channel 1.

	IEPE Ch. 2: Specifies that a IEPE compatible sensor is attached to channel 2.

	IEPE Ch. 3: Specifies that a IEPE compatible sensor is attached to channel 3.

	Coupling Ch. 0: Specifies the input coupling to use for channel 0. This setting has no effect if the channel has been setup for IEPE as IEPE always uses AC coupling.

	[image: dt9837_4]

	Coupling Ch. 1: Specifies the input coupling to use for channel 1. This setting has no effect if the channel has been setup for IEPE as IEPE always uses AC coupling.

	Coupling Ch. 2: Specifies the input coupling to use for channel 2. This setting has no effect if the channel has been setup for IEPE as IEPE always uses AC coupling.

	Coupling Ch. 3: Specifies the input coupling to use for channel 3. This setting has no effect if the channel has been setup for IEPE as IEPE always uses AC coupling.

	Click on Next

	Enable your service and click on Done

 Edge ML Plugin

Edge ML Plugin

The plugin takes a video frame from a camera or stream , sends that to edgeml cluster running somewhere else.
The Edge ML cluster returns a response in the form of json which contains information about detected objects, their bounding boxes
and confidence score. This information is overlayed on the frame and saved onto disk in the form of images. The results are also streamed on a browser.

[image: config1]

	
	‘source’: type: enumeration default: ‘stream’:

	Source of data being generated. Could be camera if camera is attached, stream if rtsp stream is to be used and directory if we have a directory of images.

	
	‘sourceDirName’: type: string default: ‘Directory For Using Images’:

	If source is directory then the directory which contains images.

	
	‘cameraId’: type: integer default: 0:

	If camera is to be used then enter the device id of camera. If you use 0 then the following command should be successful.

v4l2-ctl –list-formats-ext –device /dev/video0 .

In case you dont get output use camera id 1, 2 and so on.

	
	‘rtspUrl’: type: string default: rtsp://localhost:8554/clip:

	If source is stream, then enter the url of the rtsp stream.

	
	‘fpm’: type: integer default: ‘1000’:

	No of frames to process in a minute.

	
	‘inferenceChoice’: type: enumeration default: ‘k8’:

	If the edgeml cluster is running inside microk8’s on the same machine then use k8 or use URL if you want to send inference request to some other machine or some k8 cluster other than microk8’s.

	
	‘deploymentName’: type: string default: ‘mledge-deployment’:

	If inferenceChoice is k8 then the name of the deployment inside microk8’s. The plugin will pick the ip and port from the deployment name itself.

	
	‘restUrl’: type: string default: http://localhost:30163/v1/vision/detection:

	If inferenceChoice is URL, then the URL where the post request will be sent.

[image: config2]

	
	‘streamResults’: type: boolean default: ‘true’:

	Whether to stream detection results over HTTP(s)

	
	‘streamPort’: type: integer default: ‘8085’:

	The port over which we can display detection results in browser.

	
	‘outputAsset’: type: string default: ‘Detected Results’:

	The name of asset which contains detected results.

	
	‘destinationDir’: type: string default: ‘detection’:

	The directory where resultant images will be stored.

	
	‘rotateAfterMinutes’: type: integer default: ‘120’:

	The amount of time (in minutes) after which source images (with bounding boxes) are deleted”.

	
	‘rotateDataMinutes’: type: integer default: ‘10’:

	The amount of jpeg files (with bounding boxes) in minutes to be rotated.

Installation

Part 1: Get the video feed

There are two ways to get the video feed.

	
	Camera

	
	To see the supported configuration of the camera run the following command.

	$ v4l2-ctl --list-formats-ext --device /dev/video0
You will see something like
'YUYV' (YUYV 4:2:2)
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 720x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1280x720
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1920x1080
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 2592x1944
 Interval: Discrete 0.067s (15.000 fps)
 Size: Discrete 0x0

Above example uses Camera ID 0 to indicate use of /dev/video0 device, please use the applicable value for your setup

	Network RTSP stream

To create a network stream follow the following steps

	Install vlc

$ sudo add-apt-repository ppa:videolan/master-daily
$ sudo apt update
$ apt show vlc
$ sudo apt install vlc qtwayland5
$ sudo apt install libavcodec-extra

	Download some sample files from here.

$ git clone https://github.com/intel-iot-devkit/sample-videos.git

	Either stream a file using the following

$ vlc <name_of_file>.mp4 --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=640,height=480,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_machine_steaming>:8554/clip}' --no-sout-all --sout-keep --loop --no-sout-audio --sout-x264-profile=baseline

Note : fill the <ip_of_the_machine> with ip of the machine which will be used to stream video. Also fill <name_of_file> with the name of mp4 file.

	You can also stream from a camera using the following

$ vlc v4l2:///dev/video<index_of_video_device> --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=<supported_width_of_camera_image>,height=<supported_height_of_camera_image>,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_the_machine>:8554/clip}' --no-sout-all --sout-keep --no-sout-audio --sout-x264-profile=baseline

Fill the following :

	<index_of_video_device> The index with which you ran the v4l2 command mentioned above. for example video0.

	<supported_height_of_camera_image> Height you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 480 is height.

	<supported_width_of_camera_image> Width you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 640 is width.

	<ip_of_the_machine> ip of the machine which will be used to stream video.

Part 2: Start the Edge ML cluster

For starting the Edge ML cluster you should follow this README [https://github.com/dianomic/gcp-edgeml-quickstart/blob/develop/demo/demo_scripts/README.md] file.

Now run the plugin by filling parameters according to your setup.

 Enviro pHAT Plugin

Enviro pHAT Plugin

[image: ../../_images/envirophat_1.jpg]
The foglamp-south-envirophat is a plugin that uses the Pimoroni Enviro pHAT sensor board. The Enviro pHAT board is an environmental sensing board populated with multiple sensors, the plugin pulls data from the;

	RGB light sensor

	Magnetometer

	Accelerometer

	Temperature/pressure Sensor

Individual sensors can be enabled or disabled separately in the configuration. Separate assets are created for each sensor within FogLAMP with individual controls over the naming of these assets.

Note

The Enviro pHAT plugin is only available on the Raspberry Pi as it is specific the GPIO pins of that device.

To create a south service with the Enviro pHAT

	Click on South in the left hand menu bar

	Select envirophat from the plugin list

	Name your service and click Next

	[image: envirophat_2]

	Configure the plugin

	Asset Name Prefix: An optional prefix to add to the asset names. The asset names created by the plugin are; rgb, magnetometer, accelerometer and weather. Using the prefix you can add an identifier to the front of each such that it becomes easier to differentiate between multiple instances of the sensor.

	RGB Sensor: A toggle control to turn on or off collection of RGB light level information

	RGB Sensor Name: Set a name for the RGB sensor asset

	Magnetometer Sensor: A toggle control to turn on or off collection of magnetometer data

	Magnetometer Sensor Name: Set a name for the magnetometer sensor asset

	Accelerometer Sensor: A toggle to turn on or off collection of accelorometer data

	Accelerometer Sensor Name: Set a name for the accelerometer sensor asset

	Weather Sensor: A toggle to turn on or off collection of weather data

	Weather Sensor Name: Set a name for the weather sensor asset

	Click Next

	Enable the service and click on Done

 Expression South Plugin

Expression South Plugin

The foglamp-south-expression plugin is a plugin that is used to generate synthetic data using a mathematical expression to generate data that changes over time. The user may configure the plugin with an expression of their choice and define a period in terms of samples put period of the output and the increment between each sample.

	[image: expression_1]

The parameters that can be configured are;

	Asset Name: The name of the asset to be created inside FogLAMP.

	Expression: The expression that should be evaluated to create the asset value, see below.

	Minimum Value: The minimum value of x, where x is the value that sweeps over time.

	Maximum Value: The maximum value of x, where x is the value that sweeps over time.

	Step Value: The step in x for each call to the expression evaluation.

Expression Support

The foglamp-south-expression plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

 Flir AX8 Thermal Imaging Camera

Flir AX8 Thermal Imaging Camera

[image: ../../_images/AX8.jpg]
The foglamp-south-FlirAX8 plugin is a south plugin that enables temperature data to be collected from Flir Thermal Imaging Devices, in particular the AX8 and other A Series cameras. The camera provides a number of temperatures for both spots and boxes defined within the field of view of the camera. In addition it can also provide deltas between two temperature readings.

The bounding boxes and spots to read are configured by connecting to the web interface of the camera and dropping the spots on a thermal imaging or pulling out rectangles for the bounding boxes. The camera will return a minimum, maximum and average temperature within each bounding box.

	[image: flir_setup]

In order to configure a south service to obtain temperature data from a Flir camera select the South option from the left-hand menu bar and click on the Add icon in the top right corner of the South page that appears. Select the FlirAX8 plugin from the list of south plugins, name your service and click on Next.

The screen that appears is the configuration screen for the FlirAX8 plugin.

	[image: AX8_1]

There are four configuration parameters that can be set, usually it is only necessary to change the first two however;

	Asset Name: This is the asset name that the temperature data will be written to FogLAMP using. A single asset is used that will contain all of the values read from the camera.

	Server Address: This is the address of the Modbus server within the camera. This is the same IP address that is used to connect to the user interface of the camera.

	Port: The TCP port on which the cameras listens for Modbus requests. Unless changed in the camera the default port of 502 should be used.

	Slave ID: The Modbus Slave ID of the camera. By default the cameras are supplied with this set to 1, if changed within your camera setup you must also change the value here to match.

Once entered click on Next, enable the service on the next page and click on Done.

This will create a single asset that contains values for all boxes and spots that may be define. A filter foglamp-filter-FlirValidity can be added to the south service to remove data for boxes and spots not switched on in the camera user interface. See Flir Validity. This filter also allows you to name the boxes and hence have more meaningful names in the data points within the asset.

 FLIR GW65 Vibration Sensors

FLIR GW65 Vibration Sensors

The foglamp-south-gw65 plugin provides a mechanism to connect the FLIR vibration sensors, via the GW65 gateway to FogLAMP. The plugin allows the GW65 to be used to connect sets of the SV87 vibration sensors. Raw vibration data is then collected from the sensors and may be process by one or more of the filters that offer vibration analysis.

The connection between the sensors and the plugin, via the GW65 gateway as established using the FLIR mobile application, before starting this process however you must install and configure the foglamp-south-gw65 plugin. The plugin may be installed either by the user interface or by using the package manager of your Linux system to install it manually from a package.

You must also have an MQTT broker configured and running on your network. This should be configured to allow MQTTS and also have a username and password for the FLIR gateway to use.

Creating the GW65 South Service

Using the normal procedure for creating a new south service in FogLAMP,

	Select the South item from the menu on the left hand side of the screen

	Click on the Add + link on the top left of the South service screen

	In the list of available plugins choose the gw65 entry, if it is not in the list click on the available plugins link and install it.

	Enter a name for your service and click on Next

	The configuration page will appear

	[image: gw65_1]

	Asset Name: The asset name to use as a fallback asset. This is normally unused.

	MQTT Broker: The address of the MQTT broker that will be used to communicate with the GW65 gateway.

	Enter the address of your MQTT broker, if you running the broker on the same machine as FogLAMP then you may use the default of 127.0.0.1.

	Click on Next

	Enable the service and click on Done

You may now proceed to configure the GW65 using the FLIR mobile application.

	Open the FLIR application and select the LOCAL SERVER option.

	[image: app_1]

	Click on the Add Server link

	[image: app_2]

	Server IP: This is the IP address of your MQTT server. If you used the default 127.0.0.1 address in the south service then this should be the external address of your FogLAMP machine and not that address/

	User name: The user name you configured in your MQTT server.

	Password: The password assigned to the above user.

	Port: Leave this as the default value 8883

	Click on Continue

	[image: app_3]

	Click on the name of the discovered gateway and follow the steps to setup a connection to the WiFi network

	You will see the details of your GW65 gateway

	[image: app_4]

	Click on Continue and follow the instructions to add your sensors

Installing an MQTT Broker

You may use any compatible MQTT broker with the plugin and FLIR GW65 gateway, during testing the Mosquitto MQTT broker was used, a package exists that allows this to be installed and configured for use with gateway, this package is called foglamp-mqtt-broker.

To use the package simply use your package manager to install the package, for example on a apt based system such as Ubuntu

apt install foglamp-mqtt-broker

This will

	Install the mosquitto MQTT service

	Configure it with a certificate

	Add a user with the username foglamp

	Start it listening on port 8883 for MQTTS

Alternatively you can manually configure the Mosquitto MQTT browser by using the following steps

	Edit the configuration file /etc/mosquitto/mosquitto.conf and adding the following lines

Start of MQTTS support
listener 8883
cafile /etc/mosquitto/certs/ca.crt
certfile /etc/mosquitto/certs/client.crt
keyfile /etc/mosquitto/certs/client.key

password_file /etc/mosquitto/passwordfile
End of MQTTS support

	Create a password file by running the command

touch /etc/mosquitto/passwordfile

	Create the foglamp user

mosquitto_passwd -b /etc/mosquitto/passwordfile foglamp 123456

	Generate the required certificates

mkdir /etc/mosquitto/certs
cd /etc/mosquitto/certs
openssl req -new -x509 -days 365 -extensions v3_ca -keyout ca.key -out ca.crt -subj "/C=RO/ST=Home/L=Home/O=Dianomic/OU=FogLAMP/CN=dianomic.com" -passout pass:foglamp
openssl genrsa -out client.key 2048
openssl req -new -out client.csr -key client.key -subj "/C=RO/ST=H/L=Home/O=MQTT Broker/OU=MQTT Broker/CN=mqtt-broker.local"
openssl x509 -req -in client.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out client.crt -days 365 pass:foglamp
openssl rsa -in client.key -out client.key

	Set permissions for Mosquitto MQTT

chown -R mosquitto:/etc/mosquitto
chmod 700 /etc/mosquitto/certs

	Then restart your MQTT broker

systemctl restart mosquitto

 South HTTP

South HTTP

The foglamp-south-http plugin allows data to be received from another FogLAMP instance or external system using a REST interface. The FogLAMP which is sending the data to the corresponding north task with the HTTP north plugin installed. There are two options for the HTTP north C++ version or Python version, these serve the dual purpose of providing a data path between FogLAMP instances and also as examples of how other systems might use the REST interface from C/C++ or Python. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal FogLAMP format.

The primary purpose of this plugin is for FogLAMP to FogLAMP communication however, there is no reason to prevent other applications that wish to send data into a FogLAMP system to not use this plugin also. The only requirement is that the application that is sending the data uses the same JSON payload structure as FogLAMP uses for passing reading data between different instances. Data should be sent to the URL defined in the configuration of the plugin using a POST request. The caller may choose to send one or many readings within a single POST request and those readings may be for multiple assets.

To create a south service you, as with any other south plugin

	Select South from the left hand menu bar.

	Click on the + icon in the top left

	Choose http_south from the plugin selection list

	Name your service

	Click on Next

	Configure the plugin

	[image: http_1]

	Host: The host name or IP address to bind to. This may be left as default, in which case the plugin binds to any address. If you have a machine with multiple network interfaces you may use this parameter to select one of those interfaces to use.

	Port: The port to listen for connection from another FogLAMP instance.

	URL: URI that the plugin accepts data on. This should normally be left to the default.

	Asset Name Prefix: A prefix to add to the incoming asset names. This may be left blank if you wish to preserve the same asset names.

	Enable HTTP: This toggle specifies if HTTP connections should be accepted or not. If the toggle is off then only HTTPS connections can be used.

	Certificate Name: The name of the certificate to use for the HTTPS encryption. This should be the name of a certificate that is stored in the FogLAMP Certificate Store.

	Click Next

	Enable your service and click Done

JSON Payload

The payload that is expected by this plugin is a simple JSON presentation of a set of reading values. A JSON array is expected with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within FogLAMP.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

 INA219 Voltage & Current Sensor

INA219 Voltage & Current Sensor

[image: ../../_images/ina219.jpg]
The foglamp-south-ina219 plugin is a south plugin that uses an INA219 breakout board to measure current and voltage. The Texas Instruments INA219 is capable of measuring voltages up to 26 volts and currents up to 3.2 Amps. It connects via the I2C bus of the host and multiple sensors may be daisy chain on a single I2C bus. Breakout boards that mount the chip and its associate shunt resistor and connectors and easily available and attached to hosts with I2C buses.

The INA219 support three voltage/current ranges

	32 Volts, 2 Amps

	32 Volts, 1 Amp

	16 Volts, 400 mAmps

Choosing the smallest range that is sufficient for your application will give you the best accuracy.

Note

This plugin is only available for the Raspberry Pi as it requires to be interfaced to the I2C bus on the Raspberry Pi GPIO header socket.

To create a south service with the INA219

	Click on South in the left hand menu bar

	Select ina219 from the plugin list

	Name your service and click Next

	[image: ina219_1]

	Configure the plugin

	Asset Name: The asset name of the asst that will be written

	I2C Address: The address of the INA219 device

	Voltage Range: The voltage range that is to be used. This may be one of 32V2A, 32V1A or 16V400mA

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The INA219 uses the I2C bus on the Raspberry PI, which requires two wires to connect the bus, it also requires power taking the total to four wires

	INA219 Pin

	Raspberry Pi Pin

	Vin

	3V3 pin 1

	GND

	GND pin 9

	SDA

	SDA pin 3

	SCL

	SCL pin 5

 Lathe Simulation

Lathe Simulation

The foglamp-south-lathesim plugin is a south plugin that simulates a lathe with a number of attached sensors. The purpose of this plugin is for test and demonstration only as it does not attach to any real device.

The plugin simulates four sensor devices attached to the virtual lathe

	The PLC controlling the lathe that gives details such as cutting depth, tool position, motor speed

	A current sensor that measures the current draw from the lathe

	A vibration sensor giving the RMS value of the vibration and the dominant vibration frequency

	A thermal imaging device that takes temperature readings every second from the motor, gearbox, headstock, tailstock and tool on the lathe

The vibration sensor reports at half the rate of the other sensors attached to the lathe in order to simulate handling data that is related to the same physical device but not available at the same rate as the other sensors.

The simulation runs a repeated pattern of operations;

	A spin-up period where the lathe spins up to speed from idle.

	A period where the lathe is doing some cutting of a work piece.

	A spin-down period where the lathe is slowing to a stop.

	An idle period where the work piece is removed and replace with a new billet.

During the spin up period the lathe speed, expressed is revolutions per minute, will linearly increase from 0 to the maximum defined.

When the lathe is cutting the speed will remain predominantly constant, with a small random variation, whilst the depth of cut and X position of the cutting tool will change.

The lathe then spins down to rest and will remain idle for a short time whilst the worked item is removed and a new billet of material is installed.

During the cutting period the current draw and vibration will alter as load is applied to the piece.

Configuring the PLC

The are a number of configuration options that can be applied to the simulation.

	[image: lathe]

	Lathe Name: The name of the lathe in this configuration. This name is used to derive the assets returned from the three sets of sensors. The PLC data is returned with an asset name that machines the lathe name. The current data has Current appended to the lathe name and the asset id of the vibration name is the lathe name with Vibration appended to it. The temperature data uses the asset with the name of the lathe and IR appended to it.

	Spin up time: The time in seconds it takes the lathe to spin up to working speed from idle.

	Cutting time: The time in seconds for which the lathe is cutting material.

	Spin Down time: The time in seconds for which the lathe is spining down from operating speed to stop.

	Idle time: The time in seconds for which the lathe is idle between jobs.

	RPM: The operating speed of the lathe, expressed in revolutions per minute.

	Current: The nominal operating current draw of the lathe.

 Modbus South Plugin

Modbus South Plugin

The foglamp-south-modbus-c plugin is a south plugin that supports both TCP and RTU variants of Modbus. The plugin provides support for reading Modbus coils, input bits, registers and input registers, a flexible mechanism is provided to create a mapping between the Modbus registers and coils and the assets within FogLAMP. Multiple registers can be combined to allow larger values that then register width to be mapped from devices that represent data in this way. Support is also included for floating point representation within the Modbus registers.

Configuration Parameters

A Modbus south service is added in the same way as any other south service in FogLAMP,

	Select the South menu item

	Click on the + icon in the top right

	Select ModbusC from the plugin list

	Enter a name for your Modbus service

	Click Next

	You will be presented with the following configuration page

	[image: modbus_1]

	Asset Name: This is the name of the asset that will be used for the data read by this service. You can override this within the Modbus Map, so this should be treated as the default if no override is given.

	Protocol: This allows you to select either the RTU or TCP protocol. Modbus RTU is used whenever you have a serial connection, such as RS485 for connecting to you device. The TCP variant is used where you have a network connection to your device.

	Server Address: This is the network address of your Modbus device and is only valid if you selected the TCP protocol.

	Port: This is the port to use to connect to your Modbus device if you are using the TCP protocol.

	Device: This is the device to open if you are using the RTU protocol. This would be the name of a Linux device in /dev, for example /dev/SERIAL0

	Baud Rate: The baud rate used to communicate if you are using a serial connection with Modbus RTU.

	Number of Data Bits: The number of data bits to send on serial connections.

	Number of Stop Bits: The number of stop bits to send on the serial connections.

	Parity: The parity setting to use on the serial connection.

	Slave ID: The slave ID of the Modbus device from which you wish to pull data.

	Register Map: The register map defines which Modbus registers and coils you read, and how to map them to FogLAMP assets. The map is a complex JSON object which is described in more detail below.

	Timeout: The request timeout when communicating with a Modbus TCP client. This can be used to increase the timeout when a slow Modbus device or network is used.

	Control: Which register map should be used for mapping control entities to modebus registers.

	[image: modbus_2]

If no control is required then this may be set to None. Setting this to Use Register Map will cause all the registers that are being rad to also be targets for control. Setting this to Use Control Map will case the serperate Control Map to be used to map the control set points to modbus registers.

	Control Map: The register map that is used to map the set point names into Modbus registers for the purpose of set point control. The control map is the same JSON format document as the register map and uses the same set of properties.

Register Map

The register map is the most complex configuration parameter for this plugin and over time has supported a number of different variants. We will only document the latest of these here although previous variants are still supported. This latest variant is the most flexible to date and is thus the recommended approach to adopt.

The map is a JSON object with a single array values, each element of this array is a JSON object that defines a single item of data that will be stored in FogLAMP. These objects support a number of properties and values, these are

	Property

	Description

	name

	The name of the value that we are reading. This becomes the name of the
data point with the asset. This may be either the default asset name
defined plugin or an individual asset if an override is given.

	slave

	The Modbus slave ID of the device if it differs from the global Slave
ID defined for the plugin. If not given the default Slave ID will be
used.

	assetName

	This is an optional property that allows the asset name define for the
plugin to be overridden on an individual basis. Multiple values in the
values array may share the same AssetName, in which case the values
read from the Modbus device are placed in the same asset.

Note: This is unused in a control map.

	register

	This defines the Modbus register that is read. It may be a single
register, it which case the value is the register number or it may be
multiple registers in which case the value is a JSON array of numbers.
If an array is given then the registers are read in the order of that
array and combined into a single value by shifting each value up 16
bits and performing a logical OR operation with the next register in
the array.

	coil

	This defines the number of the Modbus coil to read. Coils are single
bit Modbus values.

	input

	This defines the number of the Modbus discrete input. Coils are single
bit Modbus values.

	inputRegister

	This defines the Modbus input register that is read. It may be a single
register, it which case the value is the register number or it may be
multiple registers in which case the value is a JSON array of numbers.
If an array is given then the registers are read in the order of that
array and combined into a single value by shifting each value up 16
bits and performing a logical OR operation with the next register in
the array.

	scale

	A scale factor to apply to the data that is read. The value read is
multiplied by this scale. This is an optional property.

	offset

	An optional offset to add to the value read from the Modbus device.

	type

	This allows data to be cast to a different type. The only support type
currently is float and is used to interpret data read from the one or
more of the 16 bit registers as a floating point value. This property
is optional.

	swap

	This is an optional property used to byte swap values read from a
Modbus device. It may be set to one of bytes, words or both to
control the swapping to apply to bytes in a 16 bit value, 16 bit words
in a 32 bit value or both bytes and words in 32 bit values.

Every value object in the values array must have one and only one of coil, input, register or inputRegister included as this defines the source of the data in your Modbus device. These are the Modbus object types and each has an address space within a typical Modbus device.

	Object Type

	Size

	Address Space

	Map Property

	Coil

	1 bit

	00001 - 09999

	coil

	Discrete Input

	1 bit

	10001 - 19999

	input

	Input Register

	16 bits

	30001 - 39999

	inputRegister

	Holding Register

	16 bits

	40001 - 49999

	register

The values in the map for coils, inputs and registers are relative to the base of the address space for that object type rather than the global address space and each is 0 based. A map value that has the property “coil” : 10 would return the values of the tenth coil and “register” : 10 would return the tenth register.

Example Maps

In this example we will assume we have a cooling fan that has a Modbus interface and we want to extract three data items of interest. These items are

	Current temperature that is in Modbus holding register 10

	Current speed of the fan that is stored as a 32 bit value in Modbus holding registers 11 and 12

	The active state of the fan that is stored in a Modbus coil 1

The Modbus Map for this example would be as follow:

{
 "values" : [
 {
 "name" : "temperature",
 "register" : 10
 },
 {
 "name" : "speed",
 "register" : [11, 12]
 },
 {
 "name" : "active",
 "coil" : 1
 }
]
}

Since none of these values have an assetName defined all there values will be stored in a single asset, the name of which is the default asset name defined for the plugin as a whole. This asset will have three data points within it; temperature, speed and active.

Set Point Control

The foglamp-south-modbus-c plugin supports the FogLAMP set point control mechanisms and allows a register map to be defined that maps the set point attributes to the underlyign modbus registers. As an example a control map as follows

{
 "values" : [
 {
 "name" : "active",
 "coil" : 1
 }
]
}

Defines that a set point write operation can be instigated agisnt the set point named active and this will map to the Modbus coil 1.

Set points may be defined for Modbus coils and registers, the rad only input bits and input registers can not be used for set point control.

The Control Map can use the same swapping, scaling and offset properties as modbus Register Map, it can also map multiple registers to a single set point and flaotign point values.

 South MQTT

South MQTT

The foglamp-south-mqtt-readings plugin allows to create an MQTT subscriber service. MQTT Subscriber reads messages from topics on the MQTT broker.

To create a south service you, as with any other south plugin

	Select South from the left hand menu bar

	Click on the + icon in the top right

	Choose mqtt-readings from the plugin selection list

	Name your service

	Click on Next

	Configure the plugin

	[image: mqtt-sub]

	MQTT Broker host: Hostname or IP address of the broker to connect to.

	MQTT Broker Port: The network port of the broker.

	Keep Alive Interval: Maximum period in seconds allowed between communications with the broker. If no other messages are being exchanged, this controls the rate at which the client will send ping messages to the broker.

	Topic To Subscribe: The subscription topic to subscribe to receive messages.

	QoS Level: The desired quality of service level for the subscription.

	Asset Name: Name of Asset.

	Click Next

	Enable your service and click Done

Message Payload

The content of the message payload published to the topic, to which the service is configured to subscribe,
should be parsable to a JSON object.

e.g. ‘{“humidity”: 93.29, “temp”: 16.82}’

$ mosquitto_pub -h localhost -t "Room1/conditions" -m '{"humidity": 93.29, "temp": 16.82}'

The mosquitto_pub client utility comes with the mosquitto package, and a great tool for conducting quick tests and troubleshooting.
https://mosquitto.org/man/mosquitto_pub-1.html

 MQTT Sparkplug B

MQTT Sparkplug B

The foglamp-south-mqtt-sparkplug plugin implements the Sparkplug B payload format with an MQTT (Message Queue Telemetry Transport) transport. The plugin will subscribe to a configured topic and will process the Sparkplug B payloads, creating FogLAMP assets form those payloads. Sparkplug is an open source software specification of a payload format and set of conventions for transporting sensor data using MQTT as the transport mechanism.

Note

Sparkplug is bi-directional, however this plugin will only read data from the Sparkplug device.

To create a south service with the MQTT Sparkplug B plugin

	Click on South in the left hand menu bar

	Select mqtt_sparkplug from the plugin list

	Name your service and click Next

	[image: sparkplug_1]

	Configure the plugin

	Asset Name: The asset name which will be used for all data read.

	MQTT Host: The MQTT host to connect to, this is the host that is running the MQTT broker.

	MQTT Port: The MQTT port, this is the port the MQTT broker uses for unencrypted traffic, usually 1883 unless modified.

	Username: The user name to be used when authenticating with the MQTT subsystem.

	Password: The password to use when authenticating with the MQTT subsystem.

	Topic: The MQTT topic to which the plugin will subscribe.

	Click Next

	Enable the service and click on Done

 MQTT South with Payload Scripting

MQTT South with Payload Scripting

The foglamp-south-mqtt-scripted plugin uses MQTT to receive messages via an MQTT broker from sensors or other sources. It then uses an optional script, written is Python, that converts the message into a JSON document and pushes data to the FogLAMP System.

If the payload of the MQTT message is a JSON document with simple key/value pairs, e.g.

{ "temperature" : 23.1, "humidity" : 47.2 }

Then no translation script is required. Also if the payload is a simple
numeric value the plugin will accept this and create an asset with
the data point name matching the topic on which the value was given in
the payload.

If the message format is not a simple JSON document or a single value,
or is in some other format then a Python script should be provided that
turns the message into a JSON format.

An example script, assuming the payload in the message is simply a value, might be a follows

def convert(message, topic):
 return {
 'temperature' : float(message)
 }

Note that the message and topic are passed as a strings and the data we wish to
ingest into FogLAMP in this case is assumed to be a floating point value.
The example above of course is unnecessary as the plugin can consume this
data without the need of a script.

The script could return either one or two values.

The script should return the JSON document as a Python DICT in the case of a single value.

The script should return a string and a JSON document as a Python DICT in the case of two values,
the first of these values is the name of the asset to use and overrides the default asset naming defined in the plugin configuration.

First case sample:

def convert(message, topic):
 return {"temperature_1": 10.2}

Second case sample:

def convert(message, topic):
 return "ExternalTEMP", {"temperature_3": 11.3}

Configuration

When adding a south service with this plugin the same flow is used as with any other south service. The configuration page for the plugin is as follows.

	[image: mqtt_01]

	Asset Name: The name of the asset the plugin will create for each message, unless the convert function returns an explict asset name to be used.

	MQTT Broker: The IP address/hostname of the MQTT broker to use. Note FogLAMP requires an external MQTT broker is run currently and does not provide an internal broker in the current release.

	Username: The username to be used if required for authentication. This should be left blank if authentication is not required.

	Password: The password to use if username is to be used.

	Trusted Certificate: The trusted certificate of the MQTT broker. If MQTTS communication is not required then this can be left blank.

	Client Certificate: The certificate that will be used by the MQTT plugin.

	MQTTS Key: The private key of the MQTT plugin. If the key is included in the PEM file of the client certificate this may be left blank.

	Key Password: The password used to encrypted the private key. This may be left blank if the private key was not encrypt.

	Topic: The MQTT topic to which to subscribe. The topic may include the usual MQTT wildcards; + for a single level wildcard and # for a multi-level wildcard

	Object Policy: Controls how the plugin deals with nested objects within the JSON payloads it receives or the return from the script that is executed. See below for a description of the various object policy values.

	Time Format: The format to both pass the timestamps into the query parameters using and also to interpret the timestamps returned in the payload.

	Timezone: The timezone to use for the start and end times that are sent in the API request and also when timestamps are read from the API response. Timezone is expressed as an offset in hours and minutes from UTC for the local timezone of the API. E.g. -08:00 for PST time zones.

	Script: The Python script to execute for message processing. Initially a file must be uploaded, however once uploaded the user may edit the script in the box provided. A script is optional.

Object Policy

The object policy is used by the plugin to determine how it deals with nested objects within the JSON that is in the MQTT payload or the JSON that is returned from the script that is executed, if present.

	[image: mqtt_02]

	Single reading from root level: This is the simple behavior of the plugin, it will only take numeric and string values that are in the root of the JSON document and ignore any objects contained in the root.

	Single reading & collapse: The plugin will create a single reading form the payload that will contain the string and numeric data in the root level. The plugin will also recursively traverse any child objects and add the string and numeric data from those to the reading as data points of the reading itself.

	Single reading & nest: As above, the plugin will create a single reading form the payload that will contain the string and numeric data in the root level. The plugin will also recursively traverse any child objects and add the string and numeric data from those objects and add them as nested data points.

	Multiple readings & collapse: The plugin will create one reading that contains any string and numeric data in the root of the JSON. It will then create one reading for each object in the root level. Each of these readings will contain the string and numeric data from those child objects along with the data found in the children of those objects. Any child data will be collapse into the base level of the readings.

	Multiple readings & nest: As above, but any data in the children of the readings found below the first level, which defines the reading names, will be created as nested data points rather than collapsed.

As an example of how the policy works assume we have an MQTT payload with a message as below

{
 "name" : "pump47",
 "motor" : {
 "current" : 0.75,
 "speed" : 1496
 },
 "flow" : 1.72,
 "temperatures" : {
 "bearing" : 21.5,
 "impeller" : 16.2,
 "motor" : {
 "casing" : 24.6,
 "gearbox" : 28.2
 }
 }
}

If the policy is set to Single reading from root level then a reading would be created, with the asset name given in the configuration of the plugin, that contained two data points name and flow.

If the policy is set to Single reading & collapse then the reading created would now have 8 data points; name, current, speed, flow, bearing, impeller, casing and gearbox. These would all be in a reading with the asset name defined in the configuration and in a flat structure.

If the policy is set to Single reading & nest there would still be a single reading, with the asset name set in the configuration, which would have data points for name, motor, flow and temperature. The motor data point would have two child data points called current and speed, the temperature data point would have three child data points called bearing, impeller and motor. This motor data point would itself have two children call casing and gearbox.

If the policy is set to Multiple readings & collapse there would be three readings created from this payload; one that is names as per the asset name in the configuration, a motor reading and a temperature reading. The first of these readings would have data points called name and flow, the motor reading would have data points current and speed. The temperatures reading would have data points bearing, impeller, casing and gearbox.

If the policy is set to Multiple readings & nest there would be three readings created from this payload; one that is names as per the asset name in the configuration, a motor reading and a temperature reading. The first of these readings would have data points called name and flow, the motor reading would have data points current and speed. The temperatures reading would have data points bearing, impeller and motor, the motor data point would have two child data points casing and gearbox.

Timestamp Treatment

The default timestamp for a reading collected via this plugin will be
the time at which the reading was taken, however it is possible for the
API that is being called to include a different timestamp.

Returning a data point called whose name is defined in the Timestamp
configuration option will result in the value of that data point being
used as the timestamp. This data point will not be added to the reading.
The default name of the timestamp is timestamp.

The timestamp data point should be a string and the timestamp should
be formatted to match the definition given in the Time format
configuration parameter. The format is based on the standard Linux
strptime formatting options and is discussed below in the section
discussing the :ref:ref::time_format selection method.

The timezone may be set by using the Timezone configuration parameter
to set the offset of the timezone in which the API is running.

Time Format

The format of the timestamps read in the message payload or by the script returned are defined by the Time Format configuration parameter and uses the standard Linux mechanism to define a time format. The following character sequences are supported.

	%%

	The % character.

	%a or %A

	The name of the day of the week according to the current locale, in abbreviated form or the full name.

	%b or %B or %h

	
The month name according to the current locale, in abbreviated form or the full name.

	%c

	The date and time representation for the current locale.

	%C

	The century number (0–99).

	%d or %e

	The day of month (1–31).

	%D

	Equivalent to %m/%d/%y. (This is the American style date, very confusing to non- Americans, especially since %d/%m/%y is widely used in Europe. The ISO 8601 standard format is %Y-%m-%d.)

	%H

	The hour (0–23).

	%I

	The hour on a 12-hour clock (1–12).

	%j

	The day number in the year (1–366).

	%m

	The month number (1–12).

	%M

	The minute (0–59).

	%n

	Arbitrary white space.

	%p

	The locale’s equivalent of AM or PM. (Note: there may be none.)

	%r

	The 12-hour clock time (using the locale’s AM or PM). In the POSIX locale equivalent to %I:%M:%S %p. If t_fmt_ampm is empty in the LC_TIME part of the current locale, then the behavior is undefined.

	%R

	Equivalent to %H:%M.

	%S

	The second (0–60; 60 may occur for leap seconds; earlier also 61 was allowed).

	%t

	Arbitrary white space.

	%T

	Equivalent to %H:%M:%S.

	%U

	The week number with Sunday the first day of the week (0–53). The first Sunday of January is the first day of week 1.

	%w

	The ordinal number of the day of the week (0–6), with Sunday = 0.

	%W

	The week number with Monday the first day of the week (0–53). The first Monday of January is the first day of week 1.

	%x

	The date, using the locale’s date format.

	%X

	The time, using the locale’s time format.

	%y

	The year within century (0–99). When a century is not otherwise specified, values in the range 69–99 refer to years in the twentieth century (1969–1999); values in the range 00–68 refer to years in the twenty-first century (2000–2068).

	%Y

	The year, including century (for example, 1991).

 OPC/UA South Plugin

OPC/UA South Plugin

The foglamp-south-opcua plugin allows FogLAMP to connect to an OPC/UA server and subscribe to changes in the objects within the OPC/UA server.

A south service to collect OPC/UA data is created in the same way as any other south service in FogLAMP.

	Use the South option in the left hand menu bar to display a list of your South services

	Click on the + add icon at the top right of the page

	Select the opcua plugin from the list of plugins you are provided with

	Enter a name for your south service

	Click on Next to configure the OPC/UA plugin

	[image: opcua_1]

The configuration parameters that can be set on this page are;

	Asset Name: This is a prefix that will be applied to all assets that are created by this plugin. The OPC/UA plugin creates a separate asset for each data item read from the OPC/UA server. This is done since the OPC/UA server will deliver changes to individual data items only. Combining these into a complex asset would result in assets that do only contain one of many data points in each update. This can cause upstream systems problems with the every changing asset structure.

	OPCUA Server URL: This is the URL of the OPC/UA server from which data will be extracted. The URL should be of the form opc.tcp://…./

	OPCUA Object Subscriptions: The subscriptions are a set of locations in the OPC/UA object hierarchy that defined which data is subscribed to in the server and hence what assets get created within FogLAMP. A fuller description of how to configure subscriptions is shown below.

	Subscribe By ID: This toggle determines if the OPC/UA objects in the subscription are using names to identify the objects in the OPC/UA object hierarchy or using object ID’s.

	Min Reporting Interval: This control the minumum interval between reports of data changes in subscrioptions. It sets an upper limit to the rate that data will be ingested into the plugin and is expressed in milliseconds.

Subscriptions

Subscriptions to OPC/UA objects are stored as a JSON object that contents an array named “subscriptions”. This array is a set of OPC/UA nodes that will control the subscription to variables in the OPC/UA server.

The array may be empty, in which case all variables are subscribed to in the server and will create assets in FogLAMP. Although simply subscribing to everything will return a lot of data that may not be of use.

If the Subscribe By ID option is set then this is an array of node Id’s. Each node Id should be of the form ns=..;s=… Where ns is a namespace index and s is the node id string identifier. A subscription will be created with the OPC/UA server for the object with the specified node id and its children, resulting in data change messages from the server for those objects. Each data change received from the server will create an asset in FogLAMP with the name of the object prepended by the value set for Asset Name. An integer identifier is also supported by using a node Id of the form ns=…;i=….

If the Subscribe By ID option is not set then the array is an array of browse names. The format of the browse names is <namespace>:<name>. If the namespace is not required then the name can simply be given, in which case any name that matches in any namespace will have a subscription created. The plugin will traverse the node tree of the server from the ObjectNodes root and subscribe to all variables that live below the named nodes in the subscriptions array.

Configuration examples

{"subscriptions":["5:Simulation","2:MyLevel"]}

We subscribe to

	5:Simulation is a node name under ObjectsNode in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["5:Sinusoid1","2:MyLevel","5:Sawtooth1"]}

We subscribe to

	5:Sinusoid1 and 5:Sawtooth1 are variables under ObjectsNode/Simulation in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["2:Random.Double","2:Random.Boolean"]}

We subscribe to

	Random.Double and Random.Boolean are variables under ObjectsNode/Demo both in namespace 2

It’s also possible to specify an empty subscription array:

{"subscriptions":[]}

Note

Depending on OPC/UA server configuration (number of objects, number of variables) this empty configuration might take a long time to create the subscriptions and hence delay the startup of the south service. It will also result in a large number of assets being created within FogLAMP.

Object names, variable names and NamespaceIndexes can be easily retrieved browsing the given OPC/UA server using OPC UA clients, such as Ua Expert.

 Person Detection Plugin

Person Detection Plugin

The foglamp-south-person-detection detects a person on a live video feed from either a camera or on a network
stream. It uses Google’s Mobilenet SSD v2 to detect a person. The bounding boxes and confidence scores are displayed on the same video frame itself.
Also FPS (frames per second) are also displayed on the same frame. The detection results are also converted into readings. The readings have mainly three things:

	Count : The number of people detected.

	Coordinates : It consists of coordinates (x,y) of top-left and bottom right corners of bounding box for each detected person.

	Confidence : Confidence with which the model detected each person.

[image: config1]

	
	TFlite Model File:

	This is the name of the tflite model file that should be placed in
python/FogLAMP/plugins/south/person_detection/model directory.
Its default value is detect_edgetpu.tflite.
If a Coral Edge TPU is not being used, the file name will be different (i.e. detect.tflite).

	
	Labels File:

	This is the name of the labels file that was used when training the above
model, this file should also be placed in same directory as the model.

	
	Asset Name:

	The name of the asset used for the readings generated by this plugin.

	
	Enable Edge TPU:

	Indicates whether to use edge TPU for inference.
If you don’t want to use Coral Edge TPU then disable this configuration parameter.
Also ensure to change the name of the model file to detect.tflite if disabled.
Default is set to enabled.

	
	Minimum Confidence Threshold:

	The detection results from the model will be filtered out, if the score is below this value.

	
	Source:

	Either use a stream over a network or use a local camera device.
Default is set to stream.

	
	Streaming URL:

	The URL of the RTSP stream, if stream is to be used. Only RTSP streams are supported for now.

	
	OpenCV Backend:

	The backend required by OpenCV to process the stream, if stream is to be used.
Default is set to ffmpeg.

	
	Streaming Protocol:

	The protocol over which live frames are being transported over the network, if stream is to be used.
Default is set to udp.

	
	Camera ID:

	The number associated with your video device. See /dev in your filesystem you will see video0 or video1.
It is required when source is set to camera.
Default is set to 0.

	
	Enable Detection Window:

	Show detection results in a native window.
Default is set to disabled.

[image: config2]

	
	Enable Web Streaming:

	Whether to stream the detected results in a browser or not.
Default is set to enabled.

	
	Web Streaming Port:

	Port number where web streaming server should run, if web streaming is enabled.
Default is set to 8085.

Installation

	First run requirements.sh

There are two ways to get the video feed.

	
	Camera

	
	To see the supported configuration of the camera run the following command.

	$ v4l2-ctl --list-formats-ext --device /dev/video0
You will see something like
'YUYV' (YUYV 4:2:2)
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 720x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1280x720
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1920x1080
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 2592x1944
 Interval: Discrete 0.067s (15.000 fps)
 Size: Discrete 0x0

Above example uses Camera ID 0 to indicate use of /dev/video0 device, please use the applicable value for your setup

	Network RTSP stream

To create a network stream follow the following steps

	Install vlc

$ sudo add-apt-repository ppa:videolan/master-daily
$ sudo apt update
$ apt show vlc
$ sudo apt install vlc qtwayland5
$ sudo apt install libavcodec-extra

	Download some sample files from here.

$ git clone https://github.com/intel-iot-devkit/sample-videos.git

	Either stream a file using the following

$ vlc <name_of_file>.mp4 --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=640,height=480,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_machine_steaming>:8554/clip}' --no-sout-all --sout-keep --loop --no-sout-audio --sout-x264-profile=baseline

Note : fill the <ip_of_the_machine> with ip of the machine which will be used to stream video. Also fill <name_of_file> with the name of mp4 file.

	You can also stream from a camera using the following

$ vlc v4l2:///dev/video<index_of_video_device> --sout '#gather:transcode{vcodec=h264,vb=512,scale=Auto,width=<supported_width_of_camera_image>,height=<supported_height_of_camera_image>,acodec=none,scodec=none}:rtp{sdp=rtsp://<ip_of_the_machine>:8554/clip}' --no-sout-all --sout-keep --no-sout-audio --sout-x264-profile=baseline

Fill the following :

<index_of_video_device> The index with which you ran the v4l2 command mentioned above. for example video0.

<supported_height_of_camera_image> Height you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 480 is height.

<supported_width_of_camera_image> Width you get when you ran v4l2 command mentioned above. For example Discrete 640x480. Here 640 is width.

<ip_of_the_machine> ip of the machine which will be used to stream video.

Once you have run the plugin by filling appropriate parameters Now go to your browser
and enter ip_where_FogLAMP_is_running:the_port_for_web_streaming

 PI Web API south Plugin

PI Web API south Plugin

The foglamp-south-piwebapi plugin is a south plugin that reads a PI Point and the related attributes from PI Web API.
The plugin extracts the last value stored in the PI Point.

Using the Plugin

To create a south service with the PI Web API plugin

	Click on South in the left hand menu bar

	Select PIWebAPI from the plugin list

	Name your service and click Next

	[image: img_001]

	Configure the plugin

	Hostname: The name or IP address of the PI Web API server.

	Server port: The port on which the PI Web API server is listening. 0 means to use the default 443 port.

	Authentication Method: The authentication method requested by the PI Web API server, it could be either basic or anonymous, if basic is selected user id and password are required.

	[image: img_002]

	User Id: The user id on the PI Web API server to allow the basic authentication.

	Password: The password associated to the user on the PI Web API server.

	PIPoint: The name of the PI Point on PI Web API for which the data should be extracted.

	Attributes: The attributes of the PI Point to extract. It can be either a single attribute or multiple attributes expressed as a json array, an example:

	[image: img_003]

	Server type: It allows to select the PI Server type either PI Asset Framework or PI Data Archive.

	[image: img_005]

	Server instance name: It specifies server instance to be used.

	Database to use: Available only in case of PI Asset Framework, it specifies the Asset Framework database from which the data should be extracted.

	Path on the server: Available only in case of PI Asset Framework, the path of the PI Web API hierarchy that should be traversed to identify the position from which the data should be to extracted, an example:

	[image: img_004]

 Playback Plugin

Playback Plugin

The foglamp-south-playback plugin is a feature rich plugin for playing back comma separated variable (CSV) files. It supports features such as;

	Header rows

	User defined column names

	Use of historic or current timestamps

	Multiple timestamp formats

	Pick and optionally rename columns

	Looped or single pass readings of the data

To create a south service with the playback plugin

	Click on South in the left hand menu bar

	Select playback from the plugin list

	Name your service and click Next

	[image: playback_01]

	Configure the plugin

	Asset Name: An asset name to use for the content of the file.

	CSV file name with extension: The name of the file that is to be processed, the file must be located in the FogLAMP data directory.

	Header Row: Toggle to indicate the first row is a header row that contains the names that should be used for the data points within the asset.

	Header Columns: Only used if Header Row is not enabled. This parameter should a column separated list of column names that will be used to name the data points within the asset.

	Cherry pick column with same/new name: This is a JSON document that can define a set of columns to include and optionally names to give those columns. If left empty then all columns, are included.

	Historic timestamps: A toggle field to control if the timestamp data should be the current time or a date and time taken from the file itself.

	Pick timestamp delta from file: If current timestamps are used then this option can be used to maintain the same relative times between successive timestamps added to the data as it is ingested.

	Timestamp column name: The name of the column that should be used for reading timestamp value. This must be given if either historic timestamps are used or the interval between readings is to be maintained.

	Timestamp format: The format of the timestamp within the file.

	Ingest mode: Determine if ingest should be in batch or burst mode. In burst mode data is ingested as a set of bursts of rows, defined by Burst size, every Burst Interval, this allows simulation if sensors that have internal buffering within them. Batch mode is the normal, regular rate ingest of data.

	Sample Rate: The data sampling rate that should be used, this is defined in readings per second.

	Burst Interval (ms): The time interval between consecutive bursts when burst mode is used.

	Burst size: The number of readings to be sent in each burst.

	Read file in a loop: Once the end of the file is reached then the plugin will go back to the start and resend the data if this toggle is on.

	Click Next

	Enable the service and click on Done

Picking Columns

The Cherry pick column with same/new name entry is a JSON document with a set of key/value pairs. The key is the name of the column in the file and the value is the name which should appear in the final asset. To illustrate this let’s assume we have a CSV file as follows

X,Y,Z,Amps,Volts
1.3,0.1,0.3,2.1,240
1.2,0.3,0.2,2.2,235
....

We want to create an asset that has the X and Y values, Amps and Volts but we want to name them X, Y, Current, Voltage. We can do this by creating a JSON document that maps the columns.

{
 "X" : "X",
 "Y" : "Y",
 "Amps" : "Current",
 "Volts" : "Voltage"
}

Since we only mention the columns X, Y, Amps and Volts, only these will be included in the asset and we will not include the column Z. We map the column name X to X, so it will be unchanged. As will the column Y, the column Amps will become the data point Current and Volts will become Voltage.

 PT100 Temperature Sensor

PT100 Temperature Sensor

[image: ../../_images/pt100.jpg]
The foglamp-south-pt100 is a south plugin for the PT-100 temperature sensor. The PT100 is a resistance temperature detectors (RTDs) consist of a fine wire (typically platinum) wrapped around a ceramic core, exhibiting a linear increase in resistance as temperature rises. The sensor connects via a MAX31865 converter to a GPIO pins for I2C bus and a chip select pin.

Note

This plugin is only available for the Raspberry Pi as it requires to be interfaced to the I2C bus on the Raspberry Pi GPIO header socket.

To create a south service with the PT100

	Click on South in the left hand menu bar

	Select pt100 from the plugin list

	Name your service and click Next

	[image: pt100_1]

	Configure the plugin

	Asset Name Prefix: A prefix to add to the asset name

	GPIO Pin: The GPIO pin on the Raspberry PI to which the MAX31865 chip select is connected.

	Click Next

	Enable the service and click on Done

Wiring The Sensor

The MAX31865 uses the I2C bus on the Raspberry PI, which requires three wires to connect the bus, it also requires a chip select pin to be wired to a general GPIO pin and power.

	MAX 31865 Pin

	Raspberry Pi Pin

	Vin

	3V3

	GND

	GND

	SDI

	MOSI

	SDO

	MISO

	CLK

	SCLK

	CS

	GPIO (default GPIO8)

There are two options for connecting a PT100 to the MAX31865, a three wire PT100 or a four wire PT100.

[image: ../../_images/pt100_4wire.jpg]
To connect a four wire PT100 to the MAX 31865 the wires are connected in pairs, the two red wires are connected to the RTD- connector pair on the MAX31865 and the two remaining wires are connected to the RTD+ connector pair. If your PT100 does not have red wires or you wish to verify the colours are correct use a multimeter to measures the resistance across the pair of wires. Each pair should show 2 ohms between them and the difference between the two pairs should be 102 ohms, but will vary with temperature.

[image: ../../_images/pt100_4wire.jpg]
To connect a three wire sensor connect the red pair of wires across the RTD+ pair of connectors and the third wire on the RTD- block. If your PT100 doe not have a pair of red wires, or you wish to verify the colours and have access to a multimeter, the resistance between the red wires should be 2 ohms. ~The resistance to the third wire, from the red pair, will be approximately 102 ohms but will vary with temperature.

If using the 3 wire sensor you must also modify the jumpers on the MAX31865.

[image: ../../_images/max31865_3wire.jpg]
Create a solder bridge across the 2/3 Wire jumper, outlined in red in the picture above.

You must also cut the thin wire trace on the jumper block outlined in yellow that runs between the 2 and 4.

Then create a new connection between the 4 and 3 side of this jumper block. This is probably best done with a solder bridge.

 Random

Random

The foglamp-south-random plugin is a plugin that will create random data.

To create a south service with the Random plugin

	Click on South in the left hand menu bar

	Select Random from the plugin list

	Name your service and click Next

	[image: random_1]

	Configure the plugin

	Asset name: The name of the asset that will be created

	Click Next

	Enable the service and click on Done

 Random Walk

Random Walk

The foglamp-south-randomwalk plugin is a plugin that will create random data between a pair of values. Each new value is based on a random increment or decrement of the previous. This results in an output that appears as follows

	[image: random_2]

To create a south service with the Random Walk plugin

	Click on South in the left hand menu bar

	Select randomwalk from the plugin list

	Name your service and click Next

	[image: random_1]

	Configure the plugin

	Asset name: The name of the asset that will be created

	Minimum Value: The minimum value to include in the output

	Maximum Value: The maximum value to include in the output

	Click Next

	Enable the service and click on Done

 OPC/UA Safe & Secure South Plugin

OPC/UA Safe & Secure South Plugin

The foglamp-south-s2opcua plugin allows FogLAMP to connect to an OPC/UA server and subscribe to changes in the objects within the OPC/UA server. This plugin is very similar to the foglamp-south-opcua plugin but is implemented using a different underlying OPC/UA open source library, S2OPC safe & secure from Systerel. The major difference between the two is the ability of this plugin to support secure endpoints with the OPC/UA server.

A south service to collect OPC/UA data is created in the same way as any other south service in FogLAMP.

	Use the South option in the left hand menu bar to display a list of your South services

	Click on the + add icon at the top right of the page

	Select the s2opcua plugin from the list of plugins you are provided with

	Enter a name for your south service

	Click on Next to configure the OPC/UA plugin

	[image: opcua_1]

The configuration parameters that can be set on this page are;

	Asset Name: This is a prefix that will be applied to all assets that are created by this plugin. The OPC/UA plugin creates a separate asset for each data item read from the OPC/UA server. This is done since the OPC/UA server will deliver changes to individual data items only. Combining these into a complex asset would result in assets that do only contain one of many data points in each update. This can cause upstream systems problems with the every changing asset structure.

	OPCUA Server URL: This is the URL of the OPC/UA server from which data will be extracted. The URL should be of the form opc.tcp://…./

	OPCUA Object Subscriptions: The subscriptions are a set of locations in the OPC/UA object hierarchy that defined which data is subscribed to in the server and hence what assets get created within FogLAMP. A fuller description of how to configure subscriptions is shown below.

	Min Reporting Interval: This control the minimum interval between reports of data changes in subscriptions. It sets an upper limit to the rate that data will be ingested into the plugin and is expressed in milliseconds.

	[image: opcua_2]

	Security Mode: Specify the OPC/UA security mode that will be used to communicate with the OPC/UA server.

	[image: opcua_3]

	Security Policy: Specify the OPC/UA security policy that will be used to communicate with the OPC/UA server.

	[image: opcua_4]

	User authentication policy: Specify the user authentication policy that will be used when authenticating the connection to the OPC/UA server.

	Username: Specify the username to use for authentication. This is only used if the User authentication policy is set to username.

	Password: Specify the password to use for authentication. This is only used if the User authentication policy is set to username.

	CA certificate authority: The name of the root certificate authorities certificate in DER format. This is the certificate authority that forms the root of trust and signs the certificates that will be trusted. If using self signed certificates this should be left blank.

	Server public key: The name of the public key of the OPC/UA server specified in the OPCUA Server URL. This should be a DER format certificate signed by the certificate authority.

	Client public key: The name of the public key of the client application, i.e. the key to use for this plugin. This should be a DER format certificate signed by the certificate authority.

	Client private key: The name of the private key of the client application, i.e. the private key the plugin will use. This should be a PEM format key.

	Certificate revocation list: The name of the certificate authority’s Certificate Revocation List. This is a DER format certificate. If using self signed certificates this should be left blank.

Subscriptions

Subscriptions to OPC/UA objects are stored as a JSON object that contents an array named “subscriptions”. This array is a set of OPC/UA nodes that will control the subscription to variables in the OPC/UA server. Each element in the array is an OPC/UA node id, if that node is is the id of a variable then that single variable will be added to the subscription list. If the node id is not a visible, then the plugin will recurse down the object tree below that node and add every variable in finds in this tree to the subscription list.

A subscription list which gives the root node of the OPC/UA server will cause all variables within the server to be added to the subscription list. Care however should be taken as this may be a large number of assets.

Subscription examples

{"subscriptions":["5:Simulation","2:MyLevel"]}

We subscribe to

	5:Simulation is a node name under ObjectsNode in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["5:Sinusoid1","2:MyLevel","5:Sawtooth1"]}

We subscribe to

	5:Sinusoid1 and 5:Sawtooth1 are variables under ObjectsNode/Simulation in namespace 5

	2:MyLevel is a variable under ObjectsNode in namespace 2

{"subscriptions":["2:Random.Double","2:Random.Boolean"]}

We subscribe to

	Random.Double and Random.Boolean are variables under ObjectsNode/Demo both in namespace 2

Object names, variable names and namespace indices can be easily retrieved browsing the given OPC/UA server using OPC UA clients, such as Ua Expert.

Certificate Management

The configuration described above uses the names of certificates that will be used by the plugin, these certificates must be loaded into the FogLAMP certificate store as a manual process and named to match the names used in the configuration before the plugin is started.

Typically the certificate authorities certificate is retrieved and uploaded to the certificate store along with the certificate from the OPC/UA server that has been signed by that certificate authority. A public/private key pair must also be created for the plugin and signed by the certificate authority. These are uploaded to the FogLAMP certificate store.

Openssl may be used to generate and convert the keys and certificates required, an generate_certs.sh example script to do this is available as part of the underlying S2OPC safe & secure library.

 Siemens S7 PLC

Siemens S7 PLC

[image: ../../_images/S7-1212.jpg]
The foglamp-south-s7 plugin is a south plugin that reads data from a Siemens S7 PLC using the S7 communication protocol. Data can be read from a number of sources within the PLC

	Data blocks - The data blocks store the state of the PLC

	Inputs - Read the state of the inputs to the PLC

	Outputs - Read the state of the outputs from the PLC

	Merkers - Read from the single bit flag store

	Counters - Read a counter

	Timers - Read a timer

Configuring the PLC

There are a number of configuration steps that must be taken on the PLC itself to support the use of the S7 protocol.

Assigning an IP Address

Using the Siemens TIA console assign an IP address to your PLC. Connect to your PLC and locate the display of the PLC device. Double click on the network connector to bring up the properties for the network interface.

	[image: Address]

Assign an IP address to your interface and if you require it you may also assign a router to use.

Enable PUT/GET operations

The S7 1200 and 1500 series PLC’s require the PUT/GET communication from partners to be enabled in order to retrieve data using the S7 protocol. To permit the PUT/GET network operations on your PLC use the Siemens VIA tool. Note you must be sure that you are offline when you do this. Locate you PLC in the tool and right click on the device select properties and the following dialog will be displayed.

The older S7-300 and S7-400 series do not require this to be done.

	[image: GETPUT]

Select the protection tab and scroll down to find the checkbox that enables the use of GET/PUT operations. Make sure it is selected for your PLC.

Using the Plugin

To create a south service with the Siemens S7 plugin

	Click on South in the left hand menu bar

	Select S7 from the plugin list

	Name your service and click Next

	[image: s7]

	Configure the plugin

	Default Asset Name: The name of the asset to use if none is given in each of the data mapping items.

	PLC IP Address: The IP address assigned to your PLC.

	Rack: The rack number to address, usually this is 0 for a standalone PLC.

	Slot: The slot within the rack, most CPU’s are in slot 1 of the rack.

	Map: The data mapping for the plugin. This tells the plugin what data to fetch from the PLC.

Map Format

The data mapping uses a JSON document to define the data that should be read. The document is an array of items to read from the PLC, each item is a datapoint within either the default asset or it may be defined as a different asset within the item. An item contains a number of properties

	asset: An optional property that can be used to put this item into an asset other than than one defined as the default asset for the service.

	datapoint: The name of the data point that the data will be placed in. All items must have a datapoint defined.

	area: The area in the PLC that data will be read from. There are a number of areas available

	PE: Process Input - these are the inputs to the PLC

	PA: Process Output - these are the outputs from the PLC

	MK: Merker - a single bit memory used to store flags

	DB: Data Block - the data blocks within the PLC used to store state within the PLC code

	CT: Counter - The counters within the PLC

	TM: Timer - The timers within the PLC

You may use the abbreviated area name, e.g. PA or the longer name Process Inputs interchangeably in the map.

	DBnumber: The data block number, this is only required for data blocks and is used to define the block to read.

	start: The offset of the start of the item within the data block

	type: The type of the data item to read. A number of different types are supported

	bit: A single bit value, mostly used to retrieve the state of a digital input to the PLC

	byte: A 8 bit integer value.

	word: A 16 bit integer value.

	dword: A 32 bit integer value.

	real: A 32 bit floating point value.

	counter: A 16 bit counter.

	timer: a 16 bit timer.

A simple data mapping that wanted to read the state of two digital inputs to the PLC, say DI0 and DI2, and wanted to labeled these as datapoints “Stop” and “Start” within the default asset would consist of two items as follows

{
 "items" : [
 {
 "datapoint": "Stop",
 "area": "PE",
 "start": 0,
 "type": "bit"
 },
 {
 "datapoint": "Start",
 "area": "PE",
 "start": 2,
 "type": "bit"
 },
]
 }

In this case we set start to 0 for DI0 as it is the first digital input in the set. DI2 has a start of 2 as it is the second input. We use the type of bit to return a simple 0 or 1 to indicate the state of the input. We could use byte instead, this would return the 8 inputs states encoded as a binary number.

{
 "datapoint": "Inputs",
 "area": "PE",
 "start": 0,
 "type": "byte"
}

Since start is set to 0 and type is byte, then we return the state of the 8 inputs. We can do the same thing using the longer name form of the area as follows.

{
 "datapoint": "Inputs",
 "area": "Process Inputs",
 "start": 0,
 "type": "byte"
}

To add in a digital output, say DO4 and label that running, we would add another item to the map

{
 "datapoint": "Running",
 "area": "PA",
 "start": 4,
 "type": "bit"
}

If we assume we have a data block that we wish to read data from that appears as follows

	[image: datablock]

Then we can setup a number of items in the map to retrieve these values and place them in data points. The items that would read this data block would be

{
 "datapoint": "count",
 "area": "DB",
 "DBnumber" : 1,
 "start": 0,
 "type": "word"
},
{
 "datapoint": "state",
 "area": "DB",
 "DBnumber" : 1,
 "start": 2,
 "type": "word"
},
{
 "datapoint": "failures",
 "area": "DB",
 "DBnumber" : 1,
 "start": 4,
 "type": "dword"
},
{
 "datapoint": "rate",
 "area": "DB",
 "DBnumber" : 1,
 "start": 8,
 "type": "word"
},
{
 "datapoint": "running",
 "area": "DB",
 "DBnumber" : 1,
 "start": 12,
 "type": "word"
},
{
 "datapoint": "downtime",
 "area": "DB",
 "DBnumber" : 1,
 "start": 14,
 "type": "timer"
}

For clarity we have used the name in the data block as the datapoint name, but these need not be the same.

If there is an error in the map definition for a given item then that item is ignored and a message is written to the error log. For example if a bad area name is given

Jun 25 08:53:04 foglamp-18 FogLAMP S7[6121]: ERROR: Invalid area Data specified in device mapping for S7 db1-bad
Jun 25 08:53:04 foglamp-18 FogLAMP S7[6121]: ERROR: Discarded invalid item in map for datapoint db1-bad

If a Data Block is missing it’s DBnumber property then the following style of error will be produced.

Jun 25 08:39:07 foglamp-18 FogLAMP S7[6121]: ERROR: Missing data block number in map for S7, db1-bad. A data block number must be specified for a data block area read.
Jun 25 08:39:07 foglamp-18 FogLAMP S7[6121]: ERROR: Discarded invalid item in map for datapoint db1-bad

Other errors that can occur include

Jun 25 08:57:28 foglamp-18 FogLAMP S7[6121]: ERROR: Missing start in map for datapoint db1-bad
Jun 25 08:57:46 foglamp-18 FogLAMP S7[6121]: ERROR: Missing type in map for datapoint db1-bad

 SenseHAT

SenseHAT

[image: ../../_images/sensehat.jpg]
The foglamp-south-sensehat is a plugin that uses the Raspberry Pi Sense HAT sensor board. The Sense HAT has an 8×8 RGB LED matrix, a five-button joystick and includes the following sensors:

	Gyroscope

	Accelerometer

	Magnetometer

	Temperature

	Barometric pressure

	Humidity

In addition it has an 8x8 matrix for RGB LED’s, these are not included in the devices the plugin supports.

Individual sensors can be enabled or disabled separately in the configuration. Separate assets are created for each sensor within FogLAMP with individual controls over the naming of these assets.

Note

The Sense HAT plugin is only available on the Raspberry Pi as it is specific the GPIO pins of that device.

To create a south service with the Sense HAT

	Click on South in the left hand menu bar

	Select sensehat from the plugin list

	Name your service and click Next

	[image: sensehat_1]

	Configure the plugin

	Asset Name Prefix: An optional prefix to add to the asset names.

	Pressure Sensor: A toggle control to turn on or off collection of pressure information

	Pressure Sensor Name: Set a name for the Pressure sensor asset

	Temperature Sensor: A toggle control to turn on or off collection of temperature information

	Temperature Sensor Name: Set a name for the temperature sensor asset

	Humidity Sensor: A toggle control to turn on or off collection of humidity information

	Humidity Sensor Name: Set a name for the humidity sensor asset

	Gyroscope Sensor: A toggle control to turn on or off collection of gyroscope information

	Gyroscope Sensor Name: Set a name for the gyroscope sensor asset

	Accelerometer Sensor: A toggle to turn on or off collection of accelerometer data

	Accelerometer Sensor Name: Set a name for the accelerometer sensor asset

	Magnetometer Sensor: A toggle control to turn on or off collection of magnetometer data

	Magnetometer Sensor Name: Set a name for the magnetometer sensor asset

	Joystick Sensor: A toggle control to turn on or off collection of joystick data

	Joystick Sensor Name: Set a name for the joystick sensor asset

	Click Next

	Enable the service and click on Done

 Simple REST with Payload Scripting

Simple REST with Payload Scripting

The foglamp-south-simple-rest plugin uses REST calls to receive API
responses from sensors or other sources. The plugin make HTTP or HTTPS
GET requests to retrieve API responses, HTTP header fields can also be
added via the plugin configuration. It then uses an optional script,
written is Python, that converts the message into a JSON document and
pushes data to the FogLAMP System. However it also has a set of built
in rules for interpreting some common payload formats which enable it to
be used without providing a script in a large number of common cases.

Configuration

When adding a south service with this plugin the same flow is used as
with any other south service. The configuration page for the plugin is
as follows.

	[image: rest_01]

	Asset Name: The name of the asset the plugin will create for each message, unless the convert function returns an explicit asset name to be used.

	URL: The URL of the REST API to be called. This should be a complete URL, including the http or https protocol to use.

	Headers: An optional set of headers to include in the REST API call. The headers are encoded as a JSON document as a set of name/value pairs within a JSON object.

	Selection Method: The plugin supports a number of methods for selecting the data should be returned. The choices are return all the data, return data based on an ID or return data based on time. See Selection Method for more details.

	[image: rest_02]

	ID Parameter: An optional URL query parameter to add to each call to the URL. This is expected to be a numeric value that gets passed to the API and is used for implementing ID passing to calls. This is only valid of the selection method ID Based has been chosen.

	Initial ID: The initial value to pass for the query parameter. This may be used on the first call only if the ID Based selection method is chosen.

	ID Field: This defines a data field that is ingested that will be used for second and subsequent calls to the API as the new value of ID. This is only used with a selection method of ID Based.

	Start: The name of the query parameter to add to the URL to indicate the start time if a selection method of Time Based has been chosen.

	End: The name of the query parameter to add to the URL to indicate the end time if a selection method of Time Based has been chosen.

	Time Format: The format to both pass the timestamps into the query parameters using and also to interpret the timestamps returned in the payload.

	Timezone: The timezone to use for the start and end times that are sent in the API request and also when timestamps are read from the API response. Timezone is expressed as an offset in hours and minutes from UTC for the local timezone of the API. E.g. -08:00 for PST timezones.

	Collapse: Collapse the returned returning to a flat structure, if not enabled a nested reading will be produced.

	Timestamp: The name of the item in the response payload that should be treated as the timestamp for the reading.

	Asset Field: The name of a field in the response payload that should be treated as the asset name to use for the reading. If this is left empty or the data does not contain a field with this name then the default asset name configured in the Asset Name configuration item will be used.

	Script: The Python script to execute for message processing. Initially a file must be uploaded, however once uploaded the user may edit the script in the box provided. A script is optional.

Selection Method

The plugin supports two methods to select data to be retrieved from the API that is called, these methods are designed for use with an API that is maintaining historic data and provided a mechanism to present the same historic data being read multiple times. If your API does not store historic data then you may select the method None to simply retrieve all the data available via the API.

ID Based

The select mechanism ID Based is designed for API that give each value some form of ID that increases over time. When a call is made you pass the value of the ID for the next data item you wish to read. This method is used in conjunction with 3 other parameters. These parameters are used to control the name of the query parameter to add to the URL, ID Parameter. This name will be used to pass in the ID to be read and is added to the URL that is configured. In the first call using the ID Based method the value of Initial ID will be passed as the value. In subsequent calls the maximum value of the data field name as per the ID Field configuration parameter will be used as the value of the ID parameter.

ID Parameter is the name of the parameter that is passed in the requests, it is appended to the configured URL along with the current value for the parameter.

For example if the URL is configured as http://api-server.com/api/v1/data?user=dianomic and the ID Parameter is defined as requestID with the Initial ID of 100, then the full URL that is used in the call will be

http://api-server.com/api/v1/data?user=dianomic&requestID=100

The URL used in the next call will be dependent on the setting of ID Field. If it is left empty then the value last used will be incremented for the next call, provided the previous call was successful. In our above example this would result in the next call using the URL

http://api-server.com/api/v1/data?user=dianomic&requestID=101

If the first call had failed, then the next call would use the same value for our parameter.

A more common case is when the data returned contains ID values for each returned value, in this case the ID Field configuration option is set and the values taken from the response will generate the next ID to use. For example, if the response payload returns sets of readings, each identified by a field called id, then set ID Field to id. A response payload that returned id’s 125, 126 & 127 would then cause the next request to send a value for the parameter of 128.

http://api-server.com/api/v1/data?user=dianomic&requestID=128

Time Based

The selection mechanism Time Based is designed for an API that returns values for a time window. It requires two parameters to be passed in the request, Start and End, to specify the time window to the server. The format of the timestamps passed to the server are defined by the Time Format configuration parameter.

	%%

	The % character.

	%a or %A

	The name of the day of the week according to the current locale, in abbreviated form or the full name.

	%b or %B or %h

	
The month name according to the current locale, in abbreviated form or the full name.

	%c

	The date and time representation for the current locale.

	%C

	The century number (0–99).

	%d or %e

	The day of month (1–31).

	%D

	Equivalent to %m/%d/%y. (This is the American style date, very confusing to non- Americans, especially since %d/%m/%y is widely used in Europe. The ISO 8601 standard format is %Y-%m-%d.)

	%H

	The hour (0–23).

	%I

	The hour on a 12-hour clock (1–12).

	%j

	The day number in the year (1–366).

	%m

	The month number (1–12).

	%M

	The minute (0–59).

	%n

	Arbitrary white space.

	%p

	The locale’s equivalent of AM or PM. (Note: there may be none.)

	%r

	The 12-hour clock time (using the locale’s AM or PM). In the POSIX locale equivalent to %I:%M:%S %p. If t_fmt_ampm is empty in the LC_TIME part of the current locale, then the behavior is undefined.

	%R

	Equivalent to %H:%M.

	%S

	The second (0–60; 60 may occur for leap seconds; earlier also 61 was allowed).

	%t

	Arbitrary white space.

	%T

	Equivalent to %H:%M:%S.

	%U

	The week number with Sunday the first day of the week (0–53). The first Sunday of January is the first day of week 1.

	%w

	The ordinal number of the day of the week (0–6), with Sunday = 0.

	%W

	The week number with Monday the first day of the week (0–53). The first Monday of January is the first day of week 1.

	%x

	The date, using the locale’s date format.

	%X

	The time, using the locale’s time format.

	%y

	The year within century (0–99). When a century is not otherwise specified, values in the range 69–99 refer to years in the twentieth century (1969–1999); values in the range 00–68 refer to years in the twenty-first century (2000–2068).

	%Y

	The year, including century (for example, 1991).

When using the Time Based selection mechanism two parameters may be appended. For example if the URL is configured as http://api-server.com/api/v1/data?user=dianomic, the configuration option Start is defined as startTime and End as endTime, with the Time Format set to be %Y-%m-$dT%H:%M:%s, then the full URL that is used in the call will be

http://api-server.com/api/v1/data?user=dianomic&startTime=2021-07-11T15:12:34&endTime=2021-07-12T12:45:12

If this call succeeds then the next call will use the endTime from this call as the startTime for the next call. The endTime is always the current time.

Request URL Handling

The plugin makes HTTP (or HTTPS) GET requests to the configured URL, this may include parameter passing. Parameters used be encoded within the URL of in the plugin configuration, however if a Selection Method other than None is selected extra parameters will be added to the request URL.

Response Payload Handling

If the payload of the REST response is a JSON document with simple key/value pairs, e.g.

{ "temperature" : 23.1, "humidity" : 47.2 }

Then no translation script is required, each key/value pair will become
a data point within an asset whose name is set in the configuration of
the plugin. A working example of this is the /foglamp/ping API call of
FogLAMP itself, it produces a response,

{
 "uptime": 27,
 "dataRead": 1063459,
 "dataSent": 617310,
 "dataPurged": 1063024,
 "authenticationOptional": true,
 "serviceName": "FogLAMP",
 "hostName": "foglamp-18",
 "ipAddresses": [
 "192.168.0.173"
],
 "health": "green",
 "safeMode": false,
 "version": "1.9.1"
}

This results in an asset which has data points for all the string,
numeric and boolean items with the response. In this case the
ipAddresses item is ignored as FogLAMP does not currently support
string array type data.

If the response payload included nested JSON objects then these will be
included also. For example if the response payload was

{
 "motor" : {
 "speed" : 12345,
 "current" : 1.4
 },
 "gearbox" : {
 "ratio" : 64,
 }
}

The three values would be extracted, speed, current and ratio. How
these values are represented will depend on the setting of the Collapse
Data configuration option. If this is set to true then a flat reading
will be created for each of the three values. If it is set to false
then a reading with two objects will be created, one for the motor and
one for the gearbox. Within these they will contain the values for the
appropriate object. The choice of flattening the data will depend on
how the user wishes to use this data upstream within FogLAMP.

If the payload is a JSON document that is an array rather than an object,
then it is interpreted as a set of readings. For example a payload that
is an array of numbers such as

[
 12.4, 15.8, 18.2
]

Will result in a set of readings, one per value being created. The asset
name and data point name will be taken for the Asset configuration
option. This same rule applies for arrays of integers, floating point
numbers, string or booleans.

The payload may also be an array of objects, in which case each object
will be an asset, with the members of the object becoming the data
points. These objects may be nested in which case they will follow the
same rules as the motor and gearbox example above.

[
 {
 "motor" : {
 "speed" : 12345,
 "current" : 1.4
 },
 "gearbox" : {
 "ratio" : 64,
 }
 },
 {
 "motor" : {
 "speed" : 12345,
 "current" : 1.4
 },
 "gearbox" : {
 "ratio" : 64,
 }
 },
]

This will create two assets with the name of the asset as the Asset
configuration option.

The default asset naming can be overridden by setting a value for the
configuration item Asset Field. This can be used to extract a value from
the data returned by the API as the name to use for the resultant
asset. If the Asset Field configuration item is set to machine
and the payload returned by the API calls is as follows.

[
 {
 "machine" : "CNC14698",
 "motor" : {
 "speed" : 12345,
 "current" : 1.4
 },
 "gearbox" : {
 "ratio" : 64,
 }
 },
 {
 "machine" : "CNC15217",
 "motor" : {
 "speed" : 12345,
 "current" : 1.4
 },
 "gearbox" : {
 "ratio" : 64,
 }
 },
]

The result would be two assets called CNC14698 and CNC15217.

Also if the payload is a simple numeric value the plugin will accept
this and create an asset with the data point name matching the topic on
which the value was given in the payload.

If the message format is not a JSON document that can be parsed using
the built in rules or is in some other format then a Python script should
be provided that turns the message into a JSON format.

An example script, assuming the payload in the message is simply a value,
might be a follows

def convert(message):
 return {
 'temperature' : float(message)
 }

Note that the message is passed as a string and the data we wish to
ingest into FogLAMP in this case is assumed to be a floating point value.
The example above of course is unnecessary as the plugin can consume this
data without the need of a script.

The script could return either one or two values.

The script should return the JSON document as a Python DICT in the case of a single value.

The script should return a string and a JSON document as a Python DICT
in the case of two values, the first of these values is the name of
the asset to use and overrides the default asset naming defined in the
plugin configuration.

First case sample:

def convert(message):
 return {'temperature_1': 10.2}

Second case sample:

def convert(message):
 return "ExternalTEMP", {'temperature_3': 11.3}

A single API call be return reading data for multiple assets. In this case
the script can return a more complex JSON document that contains both the
asset name and the data points for that asset. The return document should
return a single JSON objects called readings and within that a set of
readings, one per asset, expressed as a number of reading objects. The
key of each of these objects becomes the asset name and the value of
each is the data points within the asset.

As an example, if a single API call gives us back both data on a motor
and on a machine tool, we can process that API response into two distinct
assets; motor and tool, each with its own set of data points. In
this case the rpm and current of the motor and the temperature
and coolant flow rate for the machine tool.

{
 "readings" :
 {
 "motor" : {
 "rpm" : 8450,
 "current" : 1.3
 },
 "tool" : {
 "temperature" : 32.1,
 "coolant" : 147
 }
 }
}

If a script is returning this more complex JSON object it should not
return an asset name, if it does return an asset name with this JSON
format then the asset name will be ignored.

Timestamp Treatment

The default timestamp for a reading collected via this plugin will be
the time at which the reading was taken, however it is possible for the
API that is being called to include a different timestamp.

Returning a data point called whose name is defined in the Timestamp
configuration option will result in the value of that data point being
used as the timestamp. This data point will not be added to the reading.
The default name of the timestamp is timestamp.

The timestamp data point should be a string and the timestamp should
be formatted to match the definition given in the Time format
configuration parameter. The format is based on the standard Linux
strptime formatting options and is discussed above in the section
discussing the :ref:ref::time_based selection method. It should be noted
however that this timestamp handling in the payload is independent of
the selection method chosen.

The timezone may be set by using the Timezone configuration parameter
to set the offset of the timezone in which the API is running.

The plugin will automatically filter out a second or subsequent readings
that have the same timestamp value as previous reading for that same
asset. This allows an API which returns the timestamp of the data to
be called multiple times and the data will only be ingested once for the
given timestamp. The result is the polling rate of the south service
can be set independently of the rate the data changes.

 Sinusoid

Sinusoid

The foglamp-south-sinusoid plugin is a south plugin that is primarily designed for testing purposes. It produces as it’s output a simple sine wave, the period of which can be adjusted by changing the poll rate in the advanced settings of the south service into which it is loaded.

	[image: sinusoid_output]

There is very little configuration required for the sinusoid plugin, merely the name of the asset that should be written. This can be useful if you wish to have multiple sinusoid in your FogLAMP system.

	[image: sinusoid]

The frequency of the sinusoid can be adjusted by changing the poll rate of the sinusoid plugin. To do this select the South item from the left-hand menu bar and then click on the name of your sinusoid service. You will see a link labeled Show Advanced Config, click on this to reveal the advanced configuration.

	[image: sinusoid_advanced]

Amongst the advanced setting you will see one labeled Reading Rate. This defaults to 1 per second. The sinusoid takes 60 samples to complete one cycle of the sine wave, therefore it has a periodicity of 1 minute, or 0.0166Hz. If the Reading Rate is st to 60, then the frequency of the output becomes 1Hz.

 System Information

System Information

[image: ../../_images/systeminfo_2.jpg]
The foglamp-south-systeminfo plugin implements a that collects data about the machine that the FogLAMP instance is running on. The plugin is designed to allow the monitoring of the edge devices themselves to be included in the monitoring of the equipment involved in processing environment.

The plugin will create a number of assets, in general there are one or more assets per device connected in the case of disks and network interfaces. There are also some generic assets to measure;

	CPU Usage

	Host name

	Load Average

	Memory Usage

	Paging and swapping

	Process information

	System Uptime

A typical output for one of these assets, in this case the processes asset is shown below

	[image: systeminfo_3]

To create a south service with the systeminfo plugin

	Click on South in the left hand menu bar

	Select systeminfo from the plugin list

	Name your service and click Next

	[image: systeminfo_1]

	Configure the plugin

	Asset Name Prefix: The asset name prefix for the assets created by this plugin. The plugin will create a number of assets, the exact number is dependent on the number of devices attached to the machine.

	Click Next

	Enable the service and click on Done

 Advantech USB-4704

Advantech USB-4704

[image: ../../_images/usb_1.jpg]
The foglamp-south-usb4704 plugin is a south plugin that is designed to gather data from an Advantech USB-4704 data acquisition module. The module supports 8 digital inputs and 8 analogue inputs. It is possible to configure the plugin to combine multiple digital input to create a single numeric data point or have each input as a boolean data point. Each analogue input, which is a 14 bit analogue to digital converter, becomes a single numeric data point in the range 0 to 16383, although a scale and offset may be applied to these values.

To create a south service with the USB-4704

	Click on South in the left hand menu bar

	Select usb4704 from the plugin list

	Name your service and click Next

	[image: usb_2]

	Configure the plugin

	Asset Name: The name of the asset that will be created with the values read from the USB-4704

	Connections: A JSON document that describes the connections to the USB-4704 and the data points within the asset that they map to. The JSON document is a set of objects, one per data point. The objects contain a number of key/value pairs as follow

	Key

	Description

	type

	The type of connection, this may be either digital or analogue.

	pin

	The analogue pin used for the connection.

	pins

	An array of pins for a digital connection, the first element in the
array becomes the most significant bit of the numeric value created.

	name

	The data point name within the asset.

	scale

	An optional scale value that may be applied to the value.

	Click on Next

	Enable your service and click on Done

 South Webcam Media Plugin

South Webcam Media Plugin

The plugin keeps on taking a video frame from directory or webcam and saves into a directory. It also appends the name of the saved files in the reading generated.

[image: config1]

	
	‘assetName’: type: string default: ‘WebcamImages’:

	Name of Asset output.

	
	‘mediaType’: type: string default: ‘directory’:

	Source from which the media files are generated

	
	‘mediaDir’: type: string default: ‘webcam’:

	If the mediaType is camera then the directory where media will be stored. If the mediaType is
directory then it is the name of directory inside FOGLAMP_ROOT/data where images are stored.

	
	‘dataFormat’: type: enumeration default: ‘IMG’:

	Format of files in ‘mediaDir’

	
	‘repeatLoop’: type: boolean default: ‘false’:

	If the mediaType is directory is reload when you hit the end
playing the images from directory.

	
	‘cameraNumber’: type: integer default: ‘0’:

	Number associated with /dev/video in your file system. for example /dev/video0 then use 0.

	
	‘fpm’: type: float default: ‘10.0’:

	frames to save per minute.

Execution

To run the south webcam media plugin you can either

	Copy some images inside some directory in FOGLAMP_ROOT/data. Let’s say the directory name is pics.
Run the following command.

curl -sX POST http://localhost:8081/foglamp/service -d '{"name":"My_web_cam","type":"south","plugin":"webcam_media","enabled":true,"config":{"assetName":{"value":"WebcamImages"}, "imageDir":{"value":"pics"}, "mediaType":{"value":"directory"}, "fpm":{"value":"10.0"}}}' |

	Connect a camera to the machine and run the following command.

$ v4l2-ctl --list-formats-ext --device /dev/video0
You will see something like
'YUYV' (YUYV 4:2:2)
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 720x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1280x720
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1920x1080
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 2592x1944
 Interval: Discrete 0.067s (15.000 fps)
 Size: Discrete 0x0

Now we know that the id 0 is functional. If no output then try 1,2,3 and so on.

Finally launch the plugin using

curl -sX POST http://localhost:8081/foglamp/service -d '{"name":"My_web_cam","type":"south","plugin":"webcam_media","enabled":true,"config":{"assetName":{"value":"WebcamImages"}, "imageDir":{"value":"webcam"}, "mediaType":{"value":"camera"}, "cameraNumber":{"value":"0"}, "fpm":{"value":"10.0"}}}' |jq

 FogLAMP North Plugins

FogLAMP North Plugins

	OMF
	PI Web API OMF Endpoint

	EDS OMF Endpoint

	OCS OMF Endpoint

	PI Connector Relay
	Naming Scheme

	Asset Framework Hierarchy Rules

	OMF Hints

	Number Format Hints

	Integer Format Hints

	Type Name Hints

	Type Hint

	Tag Name Hint

	Datapoint Specific Hint

	Asset Framework Location Hint

	Adding OMF Hints

	Google Cloud Platform North Plugin
	Prerequisites
	Create GCP IoT Core Project

	Download roots.pem

	Create a Registry

	Create a Device ID

	Upload Your Certificates

	Create Your North Task

	Graphite

	North HTTP
	JSON Payload

	North HTTP-C
	Header Fields

	JSON Payload

	InfluxDB Time Series Database

	InfluxDB Cloud

	Kafka Producer

	OPCUA Server
	Hierarchy Definition

	Splunk Data Collector

	ThingSpeak

 OMF

OMF

The OMF north plugin is included in all distributions of the FogLAMP core and provides the north bound interface to the OSIsoft data historians in all it forms; PI Server, Edge Data Store and OSIsoft Cloud Services.

PI Web API OMF Endpoint

To use the PI Web API OMF endpoint first ensure the OMF option was included in your PI Server when it was installed.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_pi_web_config]

Select PI Web API from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case PI Web API.

	Send full structure: Used to control if AF structure messages are sent to the PI server. If this is turned off then the data will not be placed in the asset framework.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: The hostname or address of the PI Server.

	Server port: The port the PI Web API OMF endpoint is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Asset Framework

	
	Asset Framework Hierarchies Tree: The location in the Asset Framework into which the data will be inserted. All data will be inserted at this point in the Asset Framework unless a later rule overrides this.

	Asset Framework Hierarchies Rules: A set of rules that allow specific readings to be placed elsewhere in the Asset Framework. These rules can be based on the name of the asset itself or some metadata associated with the asset. See Asset Framework Hierarchy Rules

	
	PI Web API authentication

	
	PI Web API Authentication Method: The authentication method to be used, anonymous equates to no authentication, basic authentication requires a user name and password and Kerberos allows integration with your single sign on environment.

	PI Web API User Id: The user name to authenticate with the PI Web API.

	PI Web API Password: The password of the user we are using to authenticate.

	PI Web API Kerberos keytab file: The Kerberos keytab file used to authenticate.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

EDS OMF Endpoint

To use the OSISoft Edge Data Store first install Edge Data Store on the same machine as your FogLAMP instance. It is a limitation of Edge Data Store that it must reside on the same host as any system that connects to it with OMF.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_eds_config]

Select Edge Data Store from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case Edge Data Store.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Server hostname: The hostname or address of the PI Server. This must be the localhost for EDS.

	Server port: The port the Edge Datastore is listening on. Leave as 0 if you are using the default port.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

OCS OMF Endpoint

Go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_ocs_config]

Select OSIsoft Cloud Services from the Endpoint options.

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case OSIsoft Cloud Services.

	Naming scheme: Defines the naming scheme to be used when creating the PI points within the PI Server. See Naming Scheme.

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Authentication

	
	OCS Namespace: Your namespace within the OSISoft Cloud Services.

	OCS Tenant ID: Your OSISoft Cloud Services tenant ID for your account.

	OCS Client ID: Your OSISoft Cloud Services client ID for your account.

	OCS Client Secret: Your OCS client secret.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

PI Connector Relay

The PI Connector Relay was the original mechanism by which OMF data
could be ingesting into a PI Server, this has since been replaced by
the PI Web API OMF endpoint. It is recommended that all new deployments
should use the PI Web API endpoint as the Connector Relay has now been
discontinued by OSIsoft. To use the Connector Relay, open and sign into
the PI Relay Data Connection Manager.

	[image: PI_connectors]

To add a new connector for the FogLAMP system, click on the drop down menu to the right of “Connectors” and select “Add an OMF application”. Add and save the requested configuration information.

	[image: PI_connect]

Connect the new application to the OMF Connector Relay by selecting the new FogLAMP application, clicking the check box for the OMF Connector Relay and then clicking “Save Configuration”.

	[image: PI_token]

Finally, select the new FogLAMP application. Click “More” at the bottom of the Configuration panel. Make note of the Producer Token and Relay Ingress URL.

Now go to the FogLAMP user interface, create a new North instance and select the “OMF” plugin on the first screen.
The second screen will request the following information:

	[image: omf_plugin_connector_relay_config]

	
	Basic Information

	
	Endpoint: Select what you wish to connect to, in this case the Connector Relay.

	Server hostname: The hostname or address of the Connector Relay.

	Server port: The port the Connector Relay is listening on. Leave as 0 if you are using the default port.

	Producer Token: The Producer Token provided by PI

	Data Source: Defines which data is sent to the PI Server. The readings or FogLAMP’s internal statistics.

	Static Data: Data to include in every reading sent to PI. For example, you can use this to specify the location of the devices being monitored by the FogLAMP server.

	
	Connection management (These should only be changed with guidance from support)

	
	Sleep Time Retry: Number of seconds to wait before retrying the HTTP connection (FogLAMP doubles this time after each failed attempt).

	Maximum Retry: Maximum number of times to retry connecting to the PI server.

	HTTP Timeout: Number of seconds to wait before FogLAMP will time out an HTTP connection attempt.

	
	Other (Rarely changed)

	
	Integer Format: Used to match FogLAMP data types to the data type configured in PI. This defaults to int64 but may be set to any OMF data type compatible with integer data, e.g. int32.

	Number Format: Used to match FogLAMP data types to the data type configured in PI. The defaults is float64 but may be set to any OMF datatype that supports floating point values.

	Compression: Compress the readings data before sending it to the PI System.

Naming Scheme

The naming of objects in the asset framework and of the attributes of
those objects has a number of constraints that need to be understood when
storing data into a PI Server using OMF. An important factor in this is
the stability of your data structures. If, in your environment you have
objects are liable to change, i.e. the types of attributes change or
the number of attributes change between readings, then you may wish to
take a different naming approach to if they do not.

This occurs because of a limitation of the OMF interface to the PI
server. Data is sent to OMF in a number of stages, one of these is the
definition of the types for the AF Objects. OMF let’s a type be defined,
but once defined it can not be changed. A new type must be created rather
than changing the existing type. This means a new asset framework object
is created each time a type changes.

The OMF plugin names objects in the asset framework based upon the asset
name in the reading within FogLAMP. Asset names are typically added to
the readings in the south plugins, however they may be altered by filters
between the south ingest and the north egress points in the data
pipeline. Asset names can be overridden using the OMF Hints mechanism
described below.

The attribute names used within the objects in the PI System are based
on the names of the data points within each reading within FogLAMP. Again
OMF Hints can be used to override this mechanism.

The naming used within the objects in the Asset Framework is controlled
by the Naming Scheme option

	Concise

	No suffix or prefix is added to the asset name and property name when
creating the objects in the AF framework and Attributes in the PI
server. However if the structure of an asset changes a new AF Object
will be created which will have the suffix -type*x* appended to it.

	Use Type Suffix

	The AF Object names will be created from the asset names by appending
the suffix -type*x* to the asset name. If and when the structure
of an asset changes a new object name will be created with an
updated suffix.

	Use Attribute Hash

	Attribute names will be created using a numerical hash as a prefix.

	Backward Compatibility

	The naming reverts to the rules that were used by version 1.9.1 and
earlier of FogLAMP, both type suffices and attribute hashes will be
applied to the naming.

Asset Framework Hierarchy Rules

The asset framework rules allow the location of specific assets within
the PI Asset Framework to be controlled. There are two basic type of hint;

	Asset name placement, the name of the asset determines where in the
Asset Framework the asset is placed

	Meta data placement, metadata within the reading determines where
the asset is placed in the Asset Framework

The rules are encoded within a JSON document, this document contains
two properties in the root of the document; one for name based rules
and the other for metadata based rules

{
 "names" :
 {
 "asset1" : "/Building1/EastWing/GroundFloor/Room4",
 "asset2" : "Room14"
 },
 "metadata" :
 {
 "exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 },
 "nonexist" :
 {
 "unit" : "Uncalibrated"
 }
 "equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }
 "notequal" :
 {
 "building" :
 {
 "plant" : "/Office/Environment"
 }
 }
 }
}

The name type rules are simply a set of asset name and AF location
pairs. The asset names must be complete names, there is no pattern
matching within the names.

The metadata rules are more complex, four different tests can be applied;

	exists: This test looks for the existence of the named datapoint within the asset.

	nonexist: This test looks for the lack of a named datapoint within the asset.

	equal: This test looks for a named data point having a given value.

	notequal: This test looks for a name data point having a value different from that specified.

The exist and nonexist tests take a set of name/value pairs that
are tested. The name is the datapoint name to examine and the value is
the asset framework location to use. For example

"exist" :
 {
 "temperature" : "temperatures",
 "power" : "/Electrical/Power"
 }

If an asset has a data point called temperature in will be stored in
the AF hierarchy temperatures, if the asset had a data point called
power the asset will be placed in the AF hierarchy /Electrical/Power.

The equal and notequal tests take a object as a child, the name of
the object is data point to examine, the child nodes a sets of values
and locations. For example

"equal" :
 {
 "room" :
 {
 "4" : "ElecticalLab",
 "6" : "FluidLab"
 }
 }

In this case if the asset has a data point called room with a value
of 4 then the asset will be placed in the AF location ElectricalLab,
if it has a value of 6 then it is placed in the AF location FluidLab.

If an asset matches multiple rules in the ruleset it will appear in
multiple locations in the hierarchy, the data is shared between each of
the locations.

If an OMF Hint exists within a particular reading this will take
precedence over generic rules.

The AF location may be a simple string or it may also include
substitutions from other data points within the reading. For example
of the reading has a data point called room that contains the room
in which the readings was taken, an AF location of /BuildingA/${room}
would put the reading in the asset framework using the value of the room
data point. The reading

"reading" : {
 "temperature" : 23.4,
 "room" : "B114"
 }

would be put in the AF at /BuildingA/B114 whereas a reading of the form

"reading" : {
 "temperature" : 24.6,
 "room" : "2016"
 }

would be put at the location /BuildingA/2016.

It is also possible to define defaults if the referenced data point
is missing. Therefore in our example above if we used the location
/BuildingA/${room:unknown} a reading without a room data point would
be place in /BuildingA/unknown. If no default is given and the data
point is missing then the level in the hierarchy is ignore. E.g. if we
use our original location /BuildingA/${room} and we have the reading

"reading" : {
 "temperature" : 22.8,
 }

this reading would be stored in /BuildingA.

OMF Hints

The OMF plugin also supports the concept of hints in the actual data
that determine how the data should be treated by the plugin. Hints are
encoded in a specially name data point within the asset, OMFHint. The
hints themselves are encoded as JSON within a string.

Number Format Hints

A number format hint tells the plugin what number format to insert data
into the PI Server as. The following will cause all numeric data within
the asset to be written using the format float32.

"OMFHint" : { "number" : "float32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Integer Format Hints

an integer format hint tells the plugin what integer format to insert
data into the PI Server as. The following will cause all integer data
within the asset to be written using the format integer32.

"OMFHint" : { "number" : "integer32" }

The value of the number hint may be any numeric format that is supported by the PI Server.

Type Name Hints

A type name hint specifies that a particular name should be used when
defining the name of the type that will be created to store the object
in the Asset Framework. This will override the Naming Scheme currently
configured.

"OMFHint" : { "typeName" : "substation" }

Type Hint

A type hint is similar to a type name hint, but instead of defining
the name of a type to create it defines the name of an existing type
to use. The structure of the asset must match the structure of the
existing type with the PI Server, it is the responsibility of the person
that adds this hint to ensure this is the case.

"OMFHint" : { "type" : "pump" }

Tag Name Hint

Specifies that a specific tag name should be used when storing data in the PI server.

"OMFHint" : { "tagName" : "AC1246" }

Datapoint Specific Hint

Hints may also be targeted to specific data points within an asset by
using the datapoint hint. A datapoint hint takes a JSON object as
it’s value, this object defines the name of the datapoint and the hint
to apply.

"OMFHint" : { "datapoint" : { "name" : "voltage:, "number" : "float32" } }

The above hint applies to the datapoint voltage in the asset and
applies a number format hint to that datapoint.

Asset Framework Location Hint

An asset framework location hint can be added to a reading to control
the placement of that asset within the Asset Framework. An asset framework
hint would be as follow

"OMFHint" : { "AFLocation" : "/UK/London/TowerHill/Floor4" }

Adding OMF Hints

An OMF Hint is implemented as a string data point on a reading with
the data point name of OMFHint. It can be added at any point int he
processing of the data, however a specific plugin is available for adding
the hints, the OMFHint filter plugin.

 Google Cloud Platform North Plugin

Google Cloud Platform North Plugin

The foglamp-north-gcp plugin provide connectivity from a FogLAMP system to the Google Cloud Platform. The plugin connects to the IoT Core in Google Cloud using MQTT and is fully compliant with the security features of the Google Cloud Platform. See Using FogLAMP with IoT Core on Google Cloud for a tutorial on setting up a FogLAMP system and getting it to send data to Google Cloud.

Prerequisites

A number of things must be done in the Google Cloud before you can create your north connection to GCP. You must

	Create a GCP IoT Core project

	Download the roots.pem certificate from your GCP account

	Create a registry

	Create a device ID and configure a key pair for that device

	Upload the certificates to the FogLAMP certificate store

Create GCP IoT Core Project

To create a new project

	Goto the IoT Core page in the Cloud Console

	Select the Projects page and select the Create New Project option

	[image: gcp_02]

	Enter your project details

	[image: gcp_03]

Download roots.pem

To download the roots.pem security certificate

	From the command line shell of your machine run the command

$ wget https://pki.goog/roots.pem

Create a Registry

To create a registry in your project

	Goto the IoT Core page in the Cloud Console

	Click on the menu icon in the top left corner of the page [image: gcp_menu]

	Select the Create Registry option

	[image: gcp_registry]

	A new screen is shown that allows you to create a new registry

	[image: gcp_add_registry]

	Note the Registry ID and region as you will need these later

	Select an existing telemetry topic or create a new topic (for example, projects/[YOUR_PROJECT_ID]/topics/[REGISTRY_ID])

	Click on Create

Create a Device ID

To create a device in your Google Cloud Project

	Create an RSA public/private key pair on your local machine

openssl genpkey -algorithm RSA -out rsa_FogLAMP.pem -pkeyopt rsa_keygen_bits:2048
openssl rsa -in rsa_FogLAMP.pem -pubout -out rsa_FogLAMP.pem

	Goto the IoT Core page in the Cloud Console

	In the left pane of the IoT Core page in the Cloud Console, click Devices

	[image: gcp_devices]

	At the top of the Devices page, click Create a device

	[image: gcp_create_device]

	Enter a device ID, you will need to add this in the north plugin configuration later

	Click on the ADD ATTRIBUTE COMMUNICATION, STACKDRIVER LOGGING, AUTHENTICATION link to open the remainder of the inputs

	Make sure the public key format matches the type of key that you created in the first step of this section (for example, RS256)

	Paste the contents of your public key in the Public key value field.

Upload Your Certificates

You should upload your certificates to FogLAMP

	From the FogLAMP user interface select the Certificate Store from the left-hand menu bar

	[image: certs]

	Click on the Import option in the top left corner

	[image: import]

	In the Certificate option select the Choose file option and select your roots.pem and click on open

	Repeat the above for your device key and certificate

Create Your North Task

Having completed the pre-requisite steps it is now possible to create the north task to send data to GCP.

	Select the North option from the left-hand menu bar.

	Select GCP from the North Plugin list

	Name your North task and click on Next

	[image: gcp_01]

	Configure your GCP plugin

	Project ID: Enter the project ID you created in GCP

	The GCP Region: Select the region in which you created your registry

	Registry ID: The Registry ID you created should be entered here

	Device ID: The Device ID you created should be entered here

	Key Name: Enter the name of the device key you uploaded to the certificate store

	JWT Algorithm: Select the algorithm that matches the key you created earlier

	Data Source: Select the data to send to GCP, this may be readings or FogLAMP statistics

	Click on Next

	Enable your plugin and click on Done

 Graphite

Graphite

The foglamp-north-graphite plugin provides a means to send data from FogLAMP to the Carbon storage within Graphite to allow data to be graphed.

To create the connection to Graphite

	Select North from the left hand menu bar.

	Click on the + icon in the top left

	Choose graphite from the plugin selection list

	Name your task

	Click on Next

	Configure the plugin

	[image: graphite_1]

	Host: The host where Graphite is running.

	Port: The carbon listening port of your Graphite Carbon engine.

	Asset Root: The root of the asset structure to use with Graphite.

	Click on Next

	Enable your north task and click on Done

 North HTTP

North HTTP

The foglamp-north-http plugin allows data to be sent from the north of one FogLAMP instance into the south of another FogLAMP instance. It allows hierarchies of FogLAMP instances to be built. The FogLAMP to which the data is sent must run the corresponding South service in order for data to flow between the two FogLAMP instances. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal FogLAMP format.

The plugin may also be used to send data from FogLAMP to another system, the receiving system should implement a REST end point that will accept a POST request containing JSON data. The format of the JSON payload is described below. The required REST endpoint path is defined in the configuration of the plugin.

Filters may be applied to the connection in either the north task that loads this plugin or the receiving south service on the up stream FogLAMP.

A C++ version of this plugin exists also that performs the same function as this plugin, the pair are provided for purposes of comparison and the user may choose whichever they prefer to use.

To create a north task to send to another FogLAMP you should first create the South service that will receive the data. Then create a new north tasks by;

	Selecting North from the left hand menu bar.

	Click on the + icon in the top left

	Choose http_north from the plugin selection list

	Name your task

	Click on Next

	Configure the plugin

	[image: http_1]

	URL: The URL of the receiving South service, the address and port should match the service in the up stream FogLAMP. The URL can specify either HTTP or HTTPS protocols.

	Source: The data to send, this may be either the reading data or the statistics data

	Verify SSL: When HTTPS rather the HTTP is used this toggle allows for the verification of the certificate that is used. If a self signed certificate is used then this should not be enabled.

	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with FogLAMP filters and exists for backward compatibility reason only.

	Filter Rule: A jq filter rule to apply. Since the introduction of FogLAMP filters in the north task this has become deprecated and should not be used.

	Click Next

	Enable your task and click Done

JSON Payload

The payload that is sent by this plugin is a simple JSON presentation of a set of reading values. A JSON array is sent with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within FogLAMP.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

 North HTTP-C

North HTTP-C

The foglamp-north-http-c plugin allows data to be sent from the north of one FogLAMP instance into the south of another FogLAMP instance. It allows hierarchies of FogLAMP instances to be built. The FogLAMP to which the data is sent must run the corresponding South service in order for data to flow between the two FogLAMP instances. The plugin supports both HTTP and HTTPS transport protocols and sends a JSON payload of reading data in the internal FogLAMP format.

Additionally this plugin allows for two URL’s to be configured, a primary URL and a secondary URL. If the connection to the primary URL fails then the plugin will switch over to using the secondary URL. It will switch back if the connection to the secondary fails or if when the north task completes and a new north task is later run.

The plugin may also be used to send data from FogLAMP to another system, the receiving system should implement a REST end point that will accept a POST request containing JSON data. The format of the JSON payload is described below. The required REST endpoint path is defined in the configuration of the plugin.

Filters may be applied to the connection in either the north task that loads this plugin or the receiving south service on the up stream FogLAMP.

A Python version plugin exists also that performs the same function as this plugin, the pair are provided for purposes of comparison and the user may choose whichever they prefer to use.

To create a north task to send to another FogLAMP you should first create the South service that will receive the data. Then create a new north tasks by;

	Selecting North from the left hand menu bar.

	Click on the + icon in the top left

	Choose httpc from the plugin selection list

	Name your task

	Click on Next

	Configure the HTTP-C plugin

	[image: http_1]

	URL: The URL of the receiving South service, the address and port should match the service in the up stream FogLAMP. The URL can specify either HTTP or HTTPS protocols.

	Secondary URL: The URL to failover to if the connection to the primary URL fails. If failover is not required then leave this field empty.

	Source: The data to send, this may be either the reading data or the statistics data

	Headers: An optional set of header fields to send in every request. The headers are defined as a JSON document with the name of each item in the document as header field name and the value the value of the header field.

	Sleep Time Retry: A tuning parameter used to control how often a connection is retried to the up stream FogLAMP if it is not available. On every retry the time will be doubled.

	Maximum Retry: The maximum number of retries to make a connection to the up stream FogLAMP. When this number is reached the current execution of the task is suspended until the next scheduled run.

	Http Timeout (in seconds): The timeout to set on the HTTP connection after which the connection will be closed. This can be used to tune the response of the system when communication links are unreliable.

	Verify SSL: When HTTPS rather the HTTP is used this toggle allows for the verification of the certificate that is used. If a self signed certificate is used then this should not be enabled.

	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with FogLAMP filters and exists for backward compatibility reason only.

	Filter Rule: A jq filter rule to apply. Since the introduction of FogLAMP filters in the north task this has become deprecated and should not be used.

	Click Next

	Enable your task and click Done

Header Fields

Header fields can be defined if required using the Headers configuration item. This is a JSON document that defines a set of key/value pairs for each header field. For example if a header field token was required with the value of sfe93rjfk93rj then the Headers JSON document would be as follows

{
 "token" : "sfe93rjfk93rj"
}

Multiple header fields may be set by specifying multiple key/value pairs in the JSON document.

JSON Payload

The payload that is sent by this plugin is a simple JSON presentation of a set of reading values. A JSON array is sent with one or more reading objects contained within it. Each reading object consists of a timestamp, an asset name and a set of data points within that asset. The data points are represented as name value pair JSON properties within the reading property.

The fixed part of every reading contains the following

	Name

	Description

	timestamp

	The timestamp as an ASCII string in ISO 8601 extended format.
If no time zone information is given it is assumed to indicate
the use of UTC.

	asset

	The name of the asset this reading represents.

	readings

	A JSON object that contains the data points for this asset.

The content of the readings object is a set of JSON properties, each of which represents a data value. The type of these values may be integer, floating point, string, a JSON object or an array of floating point numbers.

A property

"voltage" : 239.4

would represent a numeric data value for the item voltage within the asset. Whereas

"voltageUnit" : "volts"

Is string data for that same asset. Other data may be presented as arrays

"acceleration" : [0.4, 0.8, 1.0]

would represent acceleration with the three components of the vector, x, y, and z. This may also be represented as an object

"acceleration" : { "X" : 0.4, "Y" : 0.8, "Z" : 1.0 }

both are valid formats within FogLAMP.

An example payload with a single reading would be as shown below

 [
 {
 "timestamp" : "2020-07-08 16:16:07.263657+00:00",
 "asset" : "motor1",
 "readings" : {
 "voltage" : 239.4,
 "current" : 1003,
 "rpm" : 120147
 }
 }
]

 InfluxDB Time Series Database

InfluxDB Time Series Database

The foglamp-north-influxdb plugin is designed to send data from FogLAMP to the InfluxDB open source time series database.

The process of creating a North InfluxDB is similar to any other north setup

	Selecting the North option in the left-hand menu bar

	Click on the add icon in the top right corner.

	In the North Plugin list select the influxdb option.

	Click Next

	Configure your InfluxDB plugin

	[image: influxdb_1]

	Host: The hostname or IP address of the machine where your InfluxDB server is running.

	Port: The port on which your InfluxDB server is listening.

	Database: The database in your InfluxDB server int which to write data.

	Username: The username if any to use to authenticate with your InfluxDB server.

	Password: The password to use to authenticate with your InfluxDB server.

	Source: The source of data to send, this may be either FogLAMP readings or the FogLAMP statistics

	Click Next

	Enable your north task and click on Done

 InfluxDB Cloud

InfluxDB Cloud

The foglamp-north-influxdbcloud plugin is designed to send data from FogLAMP to the InfluxDB Cloud system for collection and analysis of data.

The process of creating a North InfluxDB Cloud connection is similar to any other north setup

	Selecting the North option in the left-hand menu bar

	Click on the add icon in the top right corner.

	In the North Plugin list select the influxdbcloud option.

	Click Next

	Configure your InfluxDB Cloud plugin

	[image: influxdb_1]

	URL: The URL of the InfluxDB instance you are using

	InfluxDB token: an authorization token that has been generated by the InfluxDB Cloud

	Organisation ID: Your organization ID from the InfluxDB Cloud. You can find this by looking at the URL you use after connecting the InfluxDB Cloud.

	Bucket: The bucket in InfluxDB CLoud where you wish to store your data.

	Measurement: The measurement to use for the data you send to InfluxDB Cloud

	Source: The source of data to send, this may be either FogLAMP readings or the FogLAMP statistics

	
	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with FogLAMP filters and exists for backward compatibility reasons only.

	Filter Rule: A jq filter rule to apply. Since the introduction of FogLAMP filters in the north task this has become deprecated and should not be used.

	Click Next

	Enable your north task and click on Done

 Kafka Producer

Kafka Producer

The foglamp-north-kafka plugin sends data from FogLAMP to the an Apache Kafka. FogLAMP acts as a Kafka producer, sending reading data to Kafka. This implementation is a simplified producer that sends all data on a single Kafka topic. Each message contains an asset name, timestamp and set of readings values as a JSON document.

The configuration of the Kafka plugin is very simple, consisting of four parameters that must be set.

	[image: kafka]

	Bootstrap Brokers: A comma separate list of Kafka brokers to use to establish a connection to the Kafka system.

	Kafka Topic: The Kafka topic to which all data is sent.

	Send JSON: This controls how JSON data points should be sent to Kafka. These may be sent as strings or as JSON objects.

	Data Source: Which FogLAMP data to send to Kafka; Readings or FogLAMP Statistics.

 OPCUA Server

OPCUA Server

The foglamp-north-opcua plugin is a rather unusual north plugin as it does not send data to a system, but rather acts as a server from which other systems can pull data from FogLAMP. This is slightly at odds with the concept of short running tasks for sending north and does require a little more configuration when creating the North OPCUA server.

The process of creating a North OPCUA Server start as with any other north setup by selecting the North option in the left-hand menu bar, then press the add icon in the top right corner. In the North Plugin list select the opcua option.

	[image: opcua_1]

In addition to setting a name for this task it is recommended to run the OPCUA North as a service rather than a task. Running as a periodically restarted task will cause clients to be disconnected at regular intervals, when run as a service the disconnections do not occur. If run as a task set the Repeat interval to a higher value than the 30 second default as we will be later setting the maximum run time of the north task to a higher value. Once complete click on Next and move on to the configuration of the plugin itself.

	[image: opcua_2]

This second page allows for the setting of the configuration within the OPCUA server.

	Server Name: The name the OPCUA server will report itself as to any client that connects to it.

	URL: The URL that any client application will use to connect to the OPCUA server. This should always start opc.tcp://

	URI: The URI you wish to associate to your data, this is part of the OPCUA specification and may be set to any option you wish or can be left as default.

	Namespace: This defines the namespace that you wish to use for your OPCUA objects. If you are not employing a client that does namespace checking this is best left as the default.

	Source: What data is being made available via this OPCUA server. You may chose to make the reading data available or the FogLAMP statistics

	Object Root: This item can be used to define a root within the OPCUA server under which all objects are stored. If left empty then the objects will be created under the root.

	Hierarchy: This allows you to define a hierarchy for the OPCUA objects that is based on the meta data within the readings. See below for the definition of hierarchies.

Once you have completed your configuration click Next to move to the final page and then enable your north task and click Done.

The only step left is to modify the duration for which the task runs. This can only be done after it has been run for the first time. Enter your North task list again and select the OPCUA North that you just created. This will show the configuration of your North task. Click on the Show Advanced Config option to display your advanced configuration.

	[image: opcua_3]

The Duration option controls how long the north task will run before stopping. Each time it stops any client connected to the FogLAMP OPCUA server will be disconnected, in order to reduce the disconnect/reconnect volumes it is advisable to set this to a value greater than the 60 second default. In our example here we set the repeat interval to one hour, so ideally we should set the duration to an hour also such that there is no time when an OPCUA server is not running. Duration is set in seconds, so should be 3600 in our example.

Hierarchy Definition

The hierarchy definition is a JSON document that defines where in the object hierarchy data is placed. The placement is controlled by meta data attached to the readings.

Assuming that we attach meta data to each of the assets we read that give a plant name and building to each asset using the names plant and building on those assets. If we wanted to store all data for the same plant in a single location in the OPCUA object hierarchy and have each building under the plant, then we can define a hierarchy as follows

{
 "plant" :
 {
 "building" : ""
 }
}

If we had the following 4 assets with the metadata as defined

{
 "asset_code" : "A",
 "plant" : "Bolton",
 "building" : "10"

}
{
 "asset_code" : "B",
 "plant" : "Bolton",
 "building" : "7"

}
{
 "asset_code" : "C",
 "plant" : "Milan",
 "building" : "A"

}
{
 "asset_code" : "D",
 "plant" : "Milan",
 "building" : "C"

}
{
 "asset_code" : "General",
 "plant" : "Milan",

}

The data would be shown in the OPCUA server in the following structure

Bolton
 10
 A
 7
 B
Milan
 A
 C
 C
 D
 General

Any data that does not fit this structure will be stored at the root.

 Splunk Data Collector

Splunk Data Collector

The foglamp-north-splunk plugin is designed to send data from FogLAMP to the Splunk system for collecting and analysis of data.

The process of creating a North Splunk is similar to any other north setup

	Selecting the North option in the left-hand menu bar

	Click on the add icon in the top right corner.

	In the North Plugin list select the splunk option.

	Click Next

	Configure your Splunk plugin

	[image: splunk_1]

	URL: The URL of the splunk collector for events

	Source: The source of data to send, this may be either FogLAMP readings or the FogLAMP statistics

	Splunk authorisation token: an authorisation token that has been issued by the splunk data collector

	
	Apply Filter: This allows a simple jq format filter rule to be applied to the connection. This should not be confused with FogLAMP filters and exists for backward compatibility reasons only.

	Filter Rule: A jq filter rule to apply. Since the introduction of FogLAMP filters in the north task this has become deprecated and should not be used.

	Click Next

	Enable your north task and click on Done

 ThingSpeak

ThingSpeak

The foglamp-north-thingspeak plugin provides a mechanism to ThingSpeak, allowing an easy route to send data from an FogLAMP environment into MATLAB.

In order to send data to ThingSpeak you must first create a channel to receive it.

	Login to your ThingSpeak account

	From the menu bar select the Channels menu and the My Channels option

	[image: thingspeak_1]

	Click on New Channel to create a new channel

	[image: thingspeak_2]

	Enter the details for your channel, in particular name and the set of fields. These field names should match the asset names you are going to send from FogLAMP.

	When satisfied click on Save Channel

	You will need the channel ID and the API key for your channel. To get this for a channel, on the My Channels page click on the API Keys box for your channel

	[image: thingspeak_3]

Once you have created your channel on ThingSpeak you may create your north task on FogLAMP to send data to this channel

	Select North from the left hand menu bar.

	Click on the + icon in the top left

	Choose ThingSpeak from the plugin selection list

	Name your task

	Click on Next

	Configure the plugin

	[image: thingspeak_4]

	URL: The URL of the ThingSpeak server, this can usually be left as the default.

	API Key: The write API key from the ThingSpeak channel you created

	Source: Controls if readings data or FogLAMP statistics are to be send to ThingSpeak

	Fields: Allows you to select what fields to send to ThingSpeak. It’s a JSON document that contains a single array called elements. Each item of the array is a JSON object that has two properties, asset and reading. The asset should match the asset you wish to send and the reading the data point name.

	Channel ID: The channel ID of your ThingSpeak Channel

	Click on Next

	Enable your north task and click on Done

 FogLAMP Filter Plugins

FogLAMP Filter Plugins

	Asset Filter
	Asset Rules

	Change Filter

	CSV Writer
	Execution
	Part 1: Get some south service running

	Part 2: Add the filter & attach to service

	Modes
	Periodic

	Continuous

	Cron style collection

	Cascading CSV writer filter

	Behaviour on restart and reconfigure

	How data is rotated?

	Decryption

	Delta Filter

	Down Sample Filter

	Edge ML Filter Plugin
	Installation

	Exponential Moving Average

	Event Rate Filter

	Expression Filter
	Expressions

	Fast Fourier Transform Filter

	Flir Validity Filter

	Log Filter

	Metadata Filter
	Example Metadata

	OMF Hint Filter
	OMF Hint data

	Python 2.7 Filter
	Example

	Python 3.5 Filter
	Example

	Rate Filter

	Rename Filter
	Example

	Replace Filter

	Root Mean Squared (RMS) Filter

	Scale Filter

	Scale Set Filter
	Example

	Sigma Data Cleansing Filter

	Simple Python Filter

	Statistics Filter

	Threshold Filter
	Expressions

	Vibration Features Filter

 Asset Filter

Asset Filter

The foglamp-filter-asset is a filter that allows for assets to be included, excluded or renamed in a stream. It may be used either in South services or North tasks and is driven by a set of rules that define for each named asset what action should be taken.

Asset filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the asset plugin from the list of available plugins.

	Name your asset filter.

	Click Next and you will be presented with the following configuration page

	[image: asset]

	Enter the Asset rules

	Enable the plugin and click Done to activate it

Asset Rules

The asset rules are an array of JSON objects which define the asset name to which the rule is applied and an action. Actions can be one of

	include: The asset should be forwarded to the output of the filter

	exclude: The asset should not be forwarded to the output of the filter

	rename: Change the name of the asset. In this case a third property is included in the rule object, “new_asset_name”

In addition a defaultAction may be included, however this is limited to include and exclude. Any asset that does not match a specific rule will have this default action applied to them. If the default action it not given it is treated as if a default action of include had been set.

A typical set of rules might be

{
 "rules": [
 {
 "asset_name": "Random1",
 "action": "include"
 },
 {
 "asset_name": "Random2",
 "action": "rename",
 "new_asset_name": "Random92"
 },
 {
 "asset_name": "Random3",
 "action": "exclude"
 },
 {
 "asset_name": "Random4",
 "action": "rename",
 "new_asset_name": "Random94"
 },
 {
 "asset_name": "Random5",
 "action": "exclude"
 },
 {
 "asset_name": "Random6",
 "action": "rename",
 "new_asset_name": "Random96"
 },
 {
 "asset_name": "Random7",
 "action": "include"
 }
],
 "defaultAction": "include"
}

 Change Filter

Change Filter

The foglamp-filter-change filter is used to only send information about an asset onward when a particular datapoint within that asset changes by more than a configured percentage. Data is sent for a period of time before and after the change in the monitored value. The amount of data to send before and after the change is configured in milliseconds, with a value for the pre-change time and one for the post-change time.

It is possible to define a rate at which readings should be sent regardless of the monitored value changing. This provides an average of the values of the period defined, e.g. send a 1 minute average of the values every minute.

This filter only operates on a single asset, all other assets are passed through the filter unaltered.

Change filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the change plugin from the list of available plugins.

	Name your change filter.

	Click Next and you will be presented with the following configuration page

	[image: change]

	Enter the configuration for your change filter

	Asset: The asset to monitor and control with this filter. This asset is both the asset that is used to look for changes and also the only asset whose data is affected by the triggered or non-triggered state of this filter.

	Trigger: The datapoint within the asset that is used to trigger the sending of data at full rate. This datapoint may be either a numeric value or a string. If it is a string then a change of value of the defined change percentage or greater will trigger the sending of data. If the value is a string then any change in value will trigger the sending of the data.

	Required Change %: The percentage change required for a numeric value change to trigger the sending of data. If this value is set to 0 then any change in the trigger value will be enough to trigger the sending of data.

	Pre-trigger time: The number of milliseconds worth of data before the change that triggers the sending of data will be sent.

	Post-trigger time: The number if milliseconds after a change that triggered the sending of data will be sent. If there is a subsequent change while the data is being sent then this period will be reset and the the sending of data will recommence.

	Reduced collection rate: The rate at which to send averages if a change does not trigger full rate data. This is defined as a number of averages for a period defined in the rateUnit, e.g. 4 per hour.

	Rate Units: The unit associated with the average rate above. This may be one of “per second”, “per minute”, “per hour” or “per day”.

	Enable the change filter and click on Done to activate your plugin

 CSV Writer

CSV Writer

The plugin collects the readings from south service into csv files and compresses them when limit set per file is exceeded.
The files are collected in date-wise directories where a single directory contains all the files collected on that day.
The directories are rotated when the limit set is exceeded. We may collect data continuously, periodically or using a
CRON string.

[image: config1]

	
	‘inputAssets’: type: string default: ‘’:

	The names of assets (comma separated) to be stored in the csv file. All the data points of these assets will become columns in the csv file. Other assets that are not included will be forwarded. If empty all asset names will be taken.

	
	‘forwardData’: type: boolean default: false:

	Forces data to be forwarded upstream, normally data is written to csv and not sent to storage.

	
	‘destDir’: type: string default: ‘FOGLAMP_DATA/readings-out’:

	Destination directory inside $FOGLAMP_DATA e.g. /usr/local/foglamp/data/readings-out if FOGLAMP_DATA/ is prefixed otherwise it will be created as specified. Default is FOGLAMP_DATA/readings-out. If the path given without FOGLAMP_DATA/ then directory will be created inside $FOGLAMP_ROOT/services/<path>, path can be recursive.

	
	‘filterName’(Subdirectory name): type: string default: ‘south-storage’:

	Name of the specific sub-directory under the “dest dir” where records are to be written. Useful when we have multiple instances of csv writer filter.
Just for convention use the name source-destination to indicate that the filter is applied between source and destination. For example use filterName rms-database if the filter is applied between a rms filter and sqlite database.

	
	‘fileType’: type: string default: ‘csv’:

	The file type (csv or pickle) in order to store readings.

	
	‘samplingRate’: type: integer default: ‘8000’:

	The number of readings per second to be stored in the csv/pickle file.

	
	‘cronMode’: type: enumeration default: continuous:

	Cron style, either periodic, continuous, or table.
In continuous mode files are continuously, in periodic mode the files are collected at every given interval of time (configurable). In table mode the files are collected according to a cron string similar to cron in Unix environments.

	
	‘cronPeriodStart’: type: string default: ‘’:

	The time at which the collection should start. If empty the collection will start immediately after the first reading.
If a time stamp (a sample time stamp could be 2021-04-27 09:25:35.300875+00:00) is given then the plugin will start collection when the timestamp (will use user_ts of reading, if no user_ts then ts) of a reading that has arrived becomes greater than this value.
Note cronPeriodStart is useful for periodic mode and won’t be used when cronMode is table. For periodic mode we can give cronPeriodStart either in the past or in the future.

	
	‘cronPeriodDuration’: type: string default: 100ms:

	Amount of time records are written per file (in ms, sec[s], min[s], hr[s], day[s], week[s]).
For example if cronPeriodDuration is 3 mins and sample rate is 8000, Then each file will have 3*60*8000=1440000 records.
Note: It won’t be used when cronMode is table. The limit will be picked from cron string. It also won’t be used for periodic mode.

	
	‘eventRepetitionTime’: type: string default: 16min:

	Only for periodic mode. The time after which the collection starts again. (in ms, sec[s], min[s], hr[s], day[s], week[s]).

	
	‘eventPreTime’: type: string default: 1min:

	Only for periodic mode. The amount of time to consider for collection before the desired event [eg., 1min].

	
	‘eventDuration’: type: string default: 1min:

	Only for periodic mode. The duration for desired event [eg., 1min].

[image: config2]

	
	‘eventPostTime’: type: string default: 1min:

	Only for periodic mode. The amount of time to consider for collection after the desired event [eg., 1min].
Note the cronPeriodDuration for periodic mode is the sum eventPreTime, eventDuration and eventPostTime.

	
	‘rotateAfter’: type: string default: 10min:

	Total time after which rotation will occur. (eg., 4wks).
For example if rotateAfter is 7 days. Then on 12:00:00 AM of ninth day then
the first directory will be deleted.

	
	‘cronTabSpec’: type: string default: ‘’:

	This parameter controls the time at which collection takes place.

Note

It is only used when cronMode is table.
It is a string which consists of seven parts separated by spaces.
It takes the form ‘seconds(0-59) minute(0-59) hour(0-23) day-of-month (1-31) month(1-12/names) day-of-week(0-7 or names) duration(seconds[float]’

Examples:

	use string ‘0 0,15,30,45 * * * * 60’ if you want to collect at one minute worth of data zeroth, fifteenth, thirtieth, forty fifth minute of every hour.

	use string ‘0,15,30,35 * * * * * 5’ if you want to collect at five seconds worth of data zeroth, fifteenth, thirtieth, forty fifth second of every minute.

	
	‘addTimestamp’: type: boolean default: false:

	Add a timestamp to each csv entry.

	
	‘’enableCompress’: type:boolean default: true:

	Compress files after they have reached their maximum size.

	
	‘compressionType’: enumeration [‘bzip2’, ‘gzip’, ‘7za’] default bzip2:

	Select compression type to be used when ‘enableCompress’ is true.
if 7za is selected then the the files will get encrypted.

	
	‘encryptPw’: type:password default: ‘’:

	The password used to to encrypt files if 7za compression is selected.

	
	‘enable’: type: boolean default: ‘false’:

	Enable / Disable plugin operation.

Execution

Part 1: Get some south service running

For starting a south service use any of the following commands.

	Use csvplayback

Assuming you have a csv file named vibration.csv inside FOGLAMP_ROOT/data/csv_data (Can give a pattern like vib. The plugin will search for all the files starting with vib and therefore find out the file named vibration.csv). The csv file has fixed number of columns per row. Also assuming the column names are present in the first line. The plugin will rename the file with suffix .tmp after playing. Here is the curl command for that.

 res=$(curl -sX POST http://localhost:8081/foglamp/service -d @- << EOF | jq '.'
{
 "name":"My_south",
 "type":"south",
 "plugin":"csvplayback",
 "enabled":false,
 "config": {
 "assetName":{"value":"My_csv_asset"},
 "csvDirName":{"value":"FOGLAMP_DATA/csv_data"},
 "csvFileName":{"value":"vib"},
 "headerMethod":{"value":"do_not_skip"},
 "variableCols":{"value":"false"},
 "columnMethod":{"value":"pick_from_file"},
 "rowIndexForColumnNames":{"value":"0"},
 "ingestMode":{"value":"burst"},
 "sampleRate":{"value":"8000"},
 "postProcessMethod":{"value":"rename"},
 "suffixName":{"value":".tmp"}
 }
 }
 EOF
)

 echo $res

	
	Use dt9837 plugin

	Assuming you have connected accelerometers to the DAQ, run the following command. This command uses 4 channel data.

curl -sX POST http://localhost:8081/foglamp/service -d '{"name": "My_south", "type": "south", "plugin": "dt9837", "enabled": "true", "config": {"range": {"value": "BiPolar 10 Volts"}, "lowChannel": {"value": "0"}, "highChannel": {"value": "3"}}}' |jq

Part 2: Add the filter & attach to service

curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_continuous","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"","addTimestamp":"true","filterName":"continuous" ,"cronMode":"continuous", "cronPeriodDuration":"5min","rotateAfter":"7days", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_continuous"]}' |jq

Modes

Periodic

The following command will collect data after every 16 minutes and will collect 3 minutes (pre + post + event duration) worth of data
in every file. The data will get rotated after 14 + 1 = 15 days.
The collection will start at 2021-07-05 11:00:00.000000+00:00 (subtract the pre time of 1 minutes). If this time is of the past the plugin will calculate the time accordingly.
Note times are considered in utc. The plugin will convert the time zone to utc.

assign start time to a variable.
start_time="2021-07-05 11:01:00.000000+00:00"
curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_periodic","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"","addTimestamp":"true","filterName":"periodic" , "cronPeriodStart":"'"$start_time"'" ,"cronMode":"periodic", "eventRepetitionTime":"16min","eventDuration":"1min","eventPreTime":"1min","eventPostTime":"1min" ,"rotateAfter":"14days", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_periodic"]}' |jq

Some sample files will be as follows:

foglamp@foglamp:~/usr/local/foglamp/data/readings-out/periodic/2021-07-05.d$ ls
 2021-07-05-11-00-00-0000.csv.bz2
 2021-07-05-11-16-00-0000.csv.bz2
 2021-07-05-11-32-00-0000.csv.bz2
 ..
 ..
 ..

Continuous

The following command collects files continuously. Each files has 5 minutes worth of data.

curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_continuous","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"","addTimestamp":"true","filterName":"continuous" ,"cronMode":"continuous", "cronPeriodDuration":"5min","rotateAfter":"7days", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_continuous"]}' |jq

Some sample files will be as follows:

foglamp@foglamp:~/usr/local/foglamp/data/readings-out/continuous/2021-05-07.d$ ls
2021-05-07-10-00-00-0000.csv.bz2
2021-05-07-10-05-00-0000.csv.bz2
2021-05-07-10-10-00-0000.csv.bz2
..
..
..

Cron style collection

The following command collects 5 minutes of data in every two hours.

curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_discontinuous","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"0 0 0,2,4,6,8,10,12,14,16,18,20,22 * * * 300","addTimestamp":"true","filterName":"discontinuous" ,"cronMode":"table","rotateAfter":"4weeks", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_discontinuous"]}' |jq

The sample files will be like

foglamp@foglamp:~/usr/local/foglamp/data/readings-out/discontinuous/2021-05-07.d$ ls
2021-05-07-10-00-00-0000.csv.bz2
2021-05-07-12-00-00-0000.csv.bz2
2021-05-07-14-00-00-0000.csv.bz2
..
..
..

Cascading CSV writer filter

We can apply multiple instances of csv writer filter. Let’s say we want to apply three filters.
Then we need to keep forwardData of first two filters to be true. The third filter’s forwardData may or may not be true.

Consider the following example

continuous
curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_continuous","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"","addTimestamp":"true","filterName":"continuous" ,"cronMode":"continuous", "cronPeriodDuration":"5m","rotateAfter":"7days", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_continuous"]}' |jq

discontinuous
curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_discontinuous","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"0 0 0,2,4,6,8,10,12,14,16,18,20,22 * * * 300","addTimestamp":"true","filterName":"discontinuous" ,"cronMode":"table","rotateAfter":"4weeks", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_discontinuous"]}' |jq

periodic
assigning the start time to a variable.
start_time="2021-07-05 11:01:00.000000+00:00"
curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"csv_writer_periodic","plugin":"csv_writer","filter_config":{"samplingRate":"8000","enable":"true","enableCompress":"true","cronTabSpec":"","addTimestamp":"true","filterName":"periodic" , "cronPeriodStart":"'"$start_time"'" ,"cronMode":"periodic", "eventRepetitionTime":"16min","eventDuration":"1min","eventPreTime":"1min","eventPostTime":"1min" ,"rotateAfter":"14days", "forwardData":"true"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_south/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["csv_writer_periodic"]}' |jq

If forwardData of first filter is false then only the first filter will collect data.

If forwardData of first filter is true and second filter is false only first and second filter will collect data.

The forwardData of third filter may or may not be true. It is advisable to switch it off to prevent ingesting into database.

The following table sums it up.

Two CSV filters cascaded together

	Filter 1 forwardData

	Filter 2 forwardData

	Behaviour

	True

	True

	Both filters collect data and data is ingested into database.

	True

	False

	Both filters collect data and data is NOT ingested into database.

	False

	True

	Only filter 1 collects data and data is NOT ingested into database.

	False

	False

	Only filter 1 collects data and data is NOT ingested into database.

Behaviour on restart and reconfigure

After restart the collection will resume normally which means collection will begin in the same directory as it was earlier. However it may happen that the plugin was writing a file and the file is uncompressed.
This uncompressed file will be compressed when the plugin will restart.

Note that the plugin won’t wait for compression as it would be offloaded to some other thread for compression.

If this is a csv file and is empty it will be deleted.

It may also happen the directory name is changed inside configuration of the plugin. Then collection will begin inside different directory without deleting existing files.

On reconfigure the plugin will behave similar to restart.

How data is rotated?

The plugin picks rotateAfter config parameter and converts into days.
Since each day collection has got its own directory therefore when the number of directories exceed this number the first directory will get deleted and so on.
(Assuming we already had transferred these files to somewhere else before rotation.)

Note

If rotateAfter is 1week, then limit calculated will be 8. (We are talking one more day to compensate the case when collection was started at let’s say at 2 PM on first day. Had we taken 7 days then this is actually 6 days data.)
Now at 12:00:00 AM at the ninth day the first directory will get deleted and so on.

Decryption

If you had selected 7z for compression then you will obtain encrypted files.

Use the following command to decrypt the file.

7za x -p<password> <file_name>

example 7za x -ppassword123 vibration.7z
assuming password123 is password and file name is vibration.7z.

For bzip2 and gzip compression use -d flag to uncompress the file.

bzip2 -d <file_name>
gzip -d <file_name>

 Delta Filter

Delta Filter

The foglamp-filter-delta is a filter that only forwards data that changes by more than a configurable percentage. It is used to remove duplicate data values from an asset stream. The definition of duplicate however allows for some noise in the reading value by requiring a delta percentage.

By defining a minimum rate it is possible to force readings to be sent at that defined rate when there is no change in the value of the reading. Rates may be defined as per second, per minute, per hour or per day.

Delta filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the delta plugin from the list of available plugins.

	Name your delta filter.

	Click Next and you will be presented with the following configuration page

	[image: delta]

	Configure the parameters of the delta filter

	Tolerance %: The percentage tolerance when comparing reading data. Only values that differ by more than this percentage will be considered as different from each other.

	Minimum Rate: The minimum rate at which readings should be sent. This is the rate at which readings will appear if there is no change in value.

	Minimum Rate Units: The units in which minimum rate is define (per second, minute, hour or day)

	Individual Tolerances: A JSON document that can be used to define specific tolerance values for an asset. This is defines as a set of name/value pairs for those assets that should use a tolerance percentage other than the global tolerances specified above. The following example would set the tolerance for the temperature asset to 15% and for the pressure asset to 5%. All other assets would use the tolerance specified in Tolerance %.

{
 "temperature" : 15,
 "pressure" : 5
}

	Enable the filter and click Done to complete the process of adding the new filter.

 Down Sample Filter

Down Sample Filter

The foglamp-filter-downsample filter is a mechanism to reduce the amount of data ingested, it allows the effective data rate to be reduced by a given factor, for example to have the data rate you select a down sample factor of 2, to get a third the rate you select a down sample factor of 3. There are a number of algorithms available to select the value to be sent.

	Sample - the first value in the sample is used as the value for the sample set.

	Mean - the average value in the down sampled set is sent as the down sampled value.

	Median - the mathematical median value is sent as the down sampled value. This is the number found by sorting the sample and choosing the mid point of the sample.

	Mode - the mathematical mode value is sent as the down sampled value. This is the number that appears most often in the sample.

	Minimum - the minimum value in the sample is sent forward.

	Maximum - the maximum value in the sample is sued as the sample value.

Downsample filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the downsample plugin from the list of available plugins.

	Name your downsample filter.

	Click Next and you will be presented with the following configuration page

	[image: downsample_1]

	Configure your downsample filter

	Down Sample Factor: The number of incoming values in each sample set.

	Down Sample Algorithm: The algorithm used to determine the value for the sample.

	[image: downsample_2]

	Excluded Assets: A list of assets that are excluded from the down sampling process.

	Enable your filter and click Done

 Edge ML Filter Plugin

Edge ML Filter Plugin

The plugin takes a image saved by south plugin named webcam media, sends that to Edge ML cluster running somewhere else.
The Edge ML cluster returns a response in the form of json which contains information about detected objects, their bounding boxes
and confidence score. This information is appended to the readings generated from south service.

[image: config1]

	
	‘assetName’: type: string default: ‘edgeMl’:

	Name of asset to listen on; readings have path names of images to analyze. The plugin will pick these path names to read these images.

	
	‘outAssetName’: type: string default: ‘edgeMlInference’:

	Name of asset to write ML inferences on.

	
	‘deploymentName’: type: string default: ‘’:

	Name of Kubernetes deployment for ML model

	
	‘edgeMlUrl’: type: string default: ‘’:

	REST URL for ML model which analyzes images; dynamically discovered if empty.

	
	‘forwardData’: type: boolean default: ‘true’:

	Forward data as well as inferences.

	
	‘rmFile’: type: string default: ‘false’:

	Remove source files after inference.

	
	‘enable’: type: boolean default: ‘true’:

	Enable/ Disable the plugin.

Installation

To run the plugin you must follow these prerequisites.

	
	Run the south webcam media plugin.

	To run the south webcam media plugin you can either

	Copy some images inside some directory in FOGLAMP_ROOT/data. Let’s say the directory name is pics.
Run the following command.

curl -sX POST http://localhost:8081/foglamp/service -d '{"name":"My_web_cam","type":"south","plugin":"webcam_media","enabled":false,"config":{"assetName":{"value":"WebcamImages"}, "imageDir":{"value":"pics"}, "mediaType":{"value":"directory"}, "fpm":{"value":"10.0"}}}' |

	Connect a camera to the machine and run the following command.

$ v4l2-ctl --list-formats-ext --device /dev/video0
You will see something like
'YUYV' (YUYV 4:2:2)
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 720x480
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1280x720
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 1920x1080
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.033s (30.000 fps)
 Size: Discrete 2592x1944
 Interval: Discrete 0.067s (15.000 fps)
 Size: Discrete 0x0

Now we know that the id 0 is functional. If no output then try 1,2,3 and so on.

Finally launch the plugin using

curl -sX POST http://localhost:8081/foglamp/service -d '{"name":"My_web_cam","type":"south","plugin":"webcam_media","enabled":false,"config":{"assetName":{"value":"WebcamImages"}, "imageDir":{"value":"webcam"}, "mediaType":{"value":"camera"}, "cameraNumber":{"value":"0"}, "fpm":{"value":"10.0"}}}' |jq

	
	Start the Edge ML cluster.

	For starting the Edge ML cluster you should follow this README [https://github.com/dianomic/gcp-edgeml-quickstart/blob/develop/demo/demo_scripts/README.md] file.

	Add the filter Edge ML.

curl -sX POST http://localhost:8081/foglamp/filter -d '{"name":"edge_ml_filter","plugin":"edgeml","filter_config":{"deploymentName":"edgeml-deployment","assetName":"WebcamImages","outAssetName":"DetectionResults","enable":"true", "forwardData":"true", "rmFile":"false"}}' |jq
curl -sX PUT 'http://localhost:8081/foglamp/filter/My_web_cam/pipeline?allow_duplicates=true&append_filter=true' -d '{"pipeline":["edge_ml_filter"]}' |jq

	Finally Enable the schedule.

curl -sX PUT http://localhost:8081/foglamp/schedule/enable -d '{"schedule_name":"My_web_cam"}' |jq

 Exponential Moving Average

Exponential Moving Average

The foglamp-filter-ema plugin implements an exponential moving average across a set of data. It also forms an example of how to write a filter plugin purely in Python. Filters written in Python have the same functionality and set of entry points as any other filter.

The plugin_info entry point that returns details of the plugin and the default configuration

def plugin_info():
 """ Returns information about the plugin
 Args:
 Returns:
 dict: plugin information
 Raises:
 """
 return {
 'name': 'ema',
 'version': '1.9.2',
 'mode': "none",
 'type': 'filter',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

The plugin_init entry point that initialises the plugin

def plugin_init(config, ingest_ref, callback):
 """ Initialise the plugin
 Args:
 config: JSON configuration document for the Filter plugin configuration category
 ingest_ref:
 callback:
 Returns:
 data: JSON object to be used in future calls to the plugin

 ...
 return data

The plugin_reconfigure entry point that us called whenever the configuration is changed

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin
 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 """
 global rate, datapoint
 ...
 return new_handle

The plugin_shutdown entry point called to terminate the plugin

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup.
 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 plugin shutdown
 """

And the plugin_ingest call that is called to do the actual data processing

def plugin_ingest(handle, data):
""" Modify readings data and pass it onward
Args:
 handle: handle returned by the plugin initialisation call
 data: readings data
"""

Python filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the ema plugin from the list of available plugins.

	Name your ema filter.

	Click Next and you will be presented with the following configuration page

	[image: ema_1]

	Configure your ema filter

	EMA datapoint: The name of the data point to create within the asset

	Rate: The rate controls the rate of the average generated, in this case it is the percentage the current value contribute to the average value.

	Enable your plugin and click Done

 Event Rate Filter

Event Rate Filter

The foglamp-filter-eventrate is a filter plugin that has been explicitly designed to work with the
notification server, asset notification delivery mechanism and the north service. It
can be used to reduce the rate a reading is sent northwards until an
interesting event occurs. The filter will read data at full rate from
the input side and buffer data internally, sending out averages for each
value over a time frame determined by the filter configuration.

The user will provide two strings and a notification asset name that will
be used to form a trigger for the filter. One trigger string will set
the trigger and the other will clear it. When the trigger is set then the
filter will no longer average the data over the configured time period,
but will instead send the full bandwidth data out of the filter.

The trigger strings are values in the event data point of the notification
asset that is named in the configuration. If the string given in the
trigger is found within the event data point then the trigger is deemed
to have fired. String matching is case sensitive, but strings given for
trigger do not need to be the entire event reason, sub string searching
is used to evaluate the trigger.

The filter also allows a pre-trigger time to be configured. In this
case it will buffer this much data internally and when the trigger is
initially set this pre-buffered data will be sent. The pre-buffered data
is discarded if the trigger is not set and the data gets to the defined
age for holding pre-trigger information.

Event rate filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the eventrate plugin from the list of available plugins.

	Name your event rate filter.

	Click Next and you will be presented with the following configuration page

	[image: eventrate_1]

	Configure your event rate filter

	Event asset: The asset used to trigger the full rate sending of data. This is the asset that is inserted by the asset notification delivery plugin.

	Trigger Reason: A trigger reason to set the trigger for full rate data

	Terminate on: A switch to control if the end condition is a trigger or time based

	Step Reason: An untrigger reason to clear the trigger for full rate data, if left blank this will simply be the trigger filter evaluating to false

	Full rate time (ms): A full rate time after which the reduce rate is again active

	Pre-trigger time (mS): An optional pre-trigger time expressed in milliseconds

	Reduced collection rate: The nominal data rate to send data out. This defines the period over which is outgoing data item is averaged.

	Rate Units: This defines the units used for the above rate. This can be per second, per minute, per hour or per day.

	[image: eventrate_2]

	Exclusions: A set of asset names that are excluded from the rate limit processing and always sent at full rate

	Enable your plugin and click Done

 Expression Filter

Expression Filter

The foglamp-filter-expression allows an arbitrary mathematical expression to be applied to data values. The expression filter allows user to augment the data at the edge to include values calculate from one or more asset to be added and acted upon both within the FogLAMP system itself, but also forwarded on to the up stream systems. Calculations can range from very simply manipulates of a single value to convert ranges, e.g. a linear scale to a logarithmic scale, or can combine multiple values to create composite value. E.g. create a power reading from voltage and current or work out a value that is normalized for speed.

Expression filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the expression plugin from the list of available plugins.

	Name your expression filter.

	Click Next and you will be presented with the following configuration page

	[image: expression]

	Configure the expression filter

	Datapoint Name: The name of the new data point into which the new value will be stored.

	Expression to apply: This is the expression that will be evaluated for each asset reading. The expression will use the data points within the reading as symbols within the asset. See Expressions below.

	Enable the plugin and click Done to activate your filter

Expressions

The foglamp-filter-expression plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

Within the expression the data points of the asset become symbols that may be used; therefore if an asset contains values “voltage” and “current” the expression will contain those as symbols and an expression of the form

voltage * current

can be used to determine the power in Watts.

When the filter is used in an environment in which more than one asset is passing through the filter then symbols are created of the form <asset name>.<data point>. As an example if you have one asset called “electrical” that has data points of “voltage” and “current” and another asset called “speed” that has a data point called “rpm” then you can write an expression to obtain the power per 1000 RPM’s of the motor as follows;

(electrical.voltage * electrical.current) / (speed.rpm / 1000)

 Fast Fourier Transform Filter

Fast Fourier Transform Filter

The foglamp-filter-fft filter is designed to accept some periodic data such as a sample electrical waveform, audio data or vibration data and perform a Fast Fourier Transform on that data to supply frequency data about that waveform.

Data is added as a new asset which is named as the sampled asset with ” FFT” append. This FFT asset contains a set of data points that each represent the a band of frequencies, or as a frequency spectrum in a single array data point. The band information that is returned by the filter can be chosen by the user. The options available to represent each band are;

	the average in the band,

	the peak

	the RMS

	or the sum of the band.

The bands are created by dividing the frequency space into a number of equal ranges after first applying a low and high frequency filter to discard a percentage of the low and high frequency results. The bands are not created if the user instead opts to return the frequency spectrum.

If the low Pass filter is set to 15% and the high Pass filter is set to 10%, with the number of bands set to 5, the lower 15% of results are discarded and the upper 10% are discarded. The remaining 75% of readings are then divided into 5 equal bands, each of which representing 15% of the original result space. The results within each of the 15% bands are then averaged to produce a result for the frequency band.

FFT filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the fft plugin from the list of available plugins.

	Name your FFT filter.

	Click Next and you will be presented with the following configuration page

	[image: fft_1]

	Configure your FFT filter

	Asset to analysis: The name of the asset that will be used as the input to the FFT algorithm.

	[image: fft_2]

	Result Data: The data that should be returned for each band. This may be one of average, sum, peak, rms or spectrum. Selecting average will return the average amplitude within the band, sum returns the sum of all amplitudes within the frequency band, peak the greatest amplitude and rms the root mean square of the amplitudes within the band. Setting the output type to be spectrum will result in the full FFT spectrum data being written. Spectrum data however can not be sent to all north destinations as it is not supported natively on all the systems FogLAMP can send data to.

	Frequency Bands: The number of frequency bands to divide the resultant FFT output into

	Band Prefix: The prefix to add to the data point names for each band in the output

	No. of Samples per FFT: The number of input samples to use. This must be a power of 2.

	Low Frequency Reject %: A percentage of low frequencies to discard, effectively reducing the range of frequencies to examine

	High Frequency Reject %: A percentage of high frequencies to discard, effectively reducing the range of frequencies to examine

 Flir Validity Filter

Flir Validity Filter

The foglamp-filter-Flir-Validity plugin is a simple filter that filters out unused boxes and spot temperatures in the Flir temperature data stream. The filter also allows the naming of the boxes such that the data points added to the asset will use these names rather than the default box1, box2 etc.

Adding the filter to a Flir AX8 south plugin you will receive a configuration screen as below

	[image: validity]

The JSON document Area Labels can be used to set the labels to use for each of the boxes and replace the min1, min2 etc. The value of this configuration option is a JSON document that has a single element called areas which is a JSON array. Each element in that area is the name to assign to the particular box. The default values would set the name of box1 to simply be 1, box2 to 2 etc.

If we assume we are monitoring a lathe with the camera and taking the temperature of the motor, the bearing and cutting bit using the boxes 1, 2, and 3 in the camera. We wish to rename the first box to be called Motor, the second box to be called Bearing and the third to be called Tool, setting an areas array as follows would achieve this.

{
 "areas" : [
 "Motor",
 "Bearing",
 "Tool",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9",
 "10"
]
}

Note that we do not change the boxes 4 to 10 as these are not in use and have not been defined within the area interface. Using the above configuration setting for areas will result in asset names of minMotor, maxMotor and averageMotor being generated for the motor temperature. Similarly the bearing temperatures would be minBearing, maxBearing and averageBearing. The tool would have asset names of minTool, maxTool and averageTool.

 Log Filter

Log Filter

The foglamp-filter-log plugin is a simple filter that converts data to a logarithmic scale.

When adding a scale filter to either the south service or north task, via the Add Application option of the user interface, a configuration page for the filter will be shown as below;

	[image: log]

The Asset Filter entry is a regular expression that can be used to limit the assets that the filter will effect. To change all assets leave this entry blank.

 Metadata Filter

Metadata Filter

The foglamp-filter-metadata filter allows data to be added to assets within FogLAMP. Metadata takes the form of fixed data points that are added to an asset used to add context to the data. Examples of metadata might be unit of measurement information, location information or identifiers for the piece of equipment to which the measurement relates.

A metadata filter may be added to either a south service or a north task. In a south service it will be adding data for just those assets that originate in that service, in which case it probably relates to a single machine that is being monitored and would add metadata related to that machine. In a north task it causes metadata to be added to all assets that the FogLAMP is sending to the up stream system, in which case the metadata would probably related to that particular FogLAMP instance. Adding metadata in the north is particularly useful when a hierarchy of FogLAMP systems is used and an audit trail is required with the data or the individual FogLAMP systems related to some physical location information such s building, floor and/or site.

To add a metadata filter

	Click on the Applications add icon for your service or task.

	Select the metadata plugin from the list of available plugins.

	Name your metadata filter.

	Click Next and you will be presented with the following configuration page

	[image: metadata]

	Enter your metadata in the JSON array shown. You may add multiple items in a single filter by separating them with commas. Each item takes the format of a JSON key/value pair and will be added as data points within the asset.

	Enable the filter and click on Done to activate it

Example Metadata

Assume we are reading the temperature of air entering a paint booth. We might want to add the location of the paint booth, the booth number, the location of the sensor in the booth and the unit of measurement. We would add the following configuration value

{
 "value": {
 "floor": "Third",
 "booth": 1,
 "units": "C",
 "location": "AirIntake"
 }
}

In above example the filter would add “floor”, “booth”, “units” and “location” data points to all the readings processed by it. Given an input to the filter of

{ "temperature" : 23.4 }

The resultant reading that would be passed onward would become

{ "temperature" : 23.5, "booth" : 1, "units" : "C", "floor" : "Third", "location" : "AirIntake" }

This is an example of how metadata might be added in a south service. Turning to the north now, assume we have a configuration whereby we have several sites in an organization and each site has several building. We want to monitor data about the buildings and install a FogLAMP instance in each building to collect building data. We also install a FogLAMP instance in each site to collect the data from each individual FogLAMP instance per building, this allows us to then send the site data to the head office without having to allow each building FogLAMP to have access to the corporate network. Only the site FogLAMP needs that access. We want to label the data to say which building it came from and also which site. We can do this by adding metadata at each stage.

To the north task of a building FogLAMP, for example the “Pearson” building, we add the following metadata

{
 "value" : {
 "building": "Pearson"
 }
}

Likewise to the “Lawrence” building FogLAMP instance we add the following to the north task

{
 "value" : {
 "building": "Lawrence"
 }
}

These buildings are both in the “London” site and will send their data to the site FogLAMP instance. In this instance we have a north task that sends the data to the corporate headquarters, in this north task we add

{
 "value" : {
 "site": "London"
 }
}

If we assume we measure the power flow into each building in terms of current, and for the Pearson building we have a value of 117A at 11:02:15 and for the Lawrence building we have a value of 71.4A at 11:02:23, when the data is received at the corporate system we would see readings of

{ "current" : 117, "site" : "London", "building" : "Pearson" }
{ "current" : 71.4, "site" : "London", "building" : "Lawrence" }

By adding the data like this it gives as more flexibility, if for example we want to change the way site names are reported, or we acquire a second site in London, we only have to change the metadata in one place.

 OMF Hint Filter

OMF Hint Filter

The foglamp-filter-omfhint filter allows hints to be added to assets within FogLAMP that will be used by the OMF North plugin. These hints allow for individual configuration of specific assets within the OMF plugin.

A OMF hint filter may be added to either a south service or a north task. In a south service it will be adding data for just those assets that originate in that service. In a north task it causes OMF hints to be added to all assets that the FogLAMP is sending to the up stream system, it would normally only be used in a north that was using the OMF plugin, however it could be used in a north that is sending data to another FogLAMP that then forwards to OMF.

To add a OMF hints filter

	Click on the Applications add icon for your service or task.

	Select the omfhint plugin from the list of available plugins.

	Name your OMF hint filter.

	Click Next and you will be presented with the following configuration page

	[image: omfhint]

	Enter your OMF Hints in the JSON editor shown. You may add multiple hints for multiple assets in a single filter instance. See OMF Hint data

	Enable the filter and click on Done to activate it

OMF Hint data

OMF Hints comprise of an asset name which the hint applies and a JSON document that is the hint. A hint is a name/value pair, the name is the hint type and the value is the value of that hint.

The asset name may be expressed as a regular expression, in which case the hint is applied to all assets that match that regular expression.

The following hint types are currently supported by OMF North

	integer: The format to use for integers, the value is a string and may be any of the PI Server supported formats; int64, int32, int16, uint64, uint32 or uint16

	number: The format to use for numbers, the value is a string and may be any of the PI Server supported formats; float64, float32 or float16

	typeName: Specify a particular type name that should be used by the plugin when it generates a type for the asset. The value of the hint is the name of the type to create.

	tagName: Specify a particular tag name that should be used by the plugin when it generates a tag for the asset. The value of the hint is the name of the tag to create.

	type: Specify a pre-existing type that should be used for the asset. In this case the value of the hint is the type to use. The type must already exist within your PI Server and must be compatible with the values within the asset.

	datapoint: Specifies that this hint applies to a single datapoint within the asset. The value is a JSON object that contains the name of the datapoint and one or more hints.

The following example shows a simple hint to set the number format to use for all numeric data within the asset names supply.

{
 "supply": {
 "number": "float32"
 }
}

To apply a hint to all assets, the single hint definition can be used with a regular expression.

{
 ".*": {
 "number": "float32"
 }
}

Regular expressions may also be used to select subsets of assets, in the following case only assets with the prefix OPCUA will have the hint applied.

{
 "OPCUA.*": {
 "number": "float32"
 }
}

To apply a hint to a particular data point the hint would be as follows

{
 "supply": {
 "datapoint" :
 {
 "name": "frequency"
 "integer": "uint16"
 }
 }
}

This example sets the datapoint frequency within the supply asset to be stored in the PI server as a uint16.

Datapoint hints can be combined with asset hints

{
 "supply": {
 "number" : "float32",
 "datapoint" :
 {
 "name": "frequency"
 "integer": "uint16"
 }
 }
}

In this case all numeric data except for frequency will be stored as float32 and frequency will be stored as uint16.

 Python 2.7 Filter

Python 2.7 Filter

The foglamp-filter-python27 filter allows snippets of Python to be easily written that can be used as filters in FogLAMP. A similar filter exists that uses Python 3.5 syntax, the foglamp-filter-python35 filter. A Python code snippet will be called with sets of asset readings as they or read or processed in a filter pipeline. The data appears in the Python code as a JSON document passed as a Python Dict type.

The user should provide a Python function whose name matches the name given to the plugin when added to the filter pipeline of the south service or north task, e.g. if you name your filter myPython then you should have a function named myPython in the code you enter. This function is send a set of readings to process and should return a set of processed readings. The returned set of readings may be empty if the filter removes all data.

A general code syntax for the function that should be provided is;

def myPython(readings):
 for elem in list(readings):
 ...
 return readings

Each element that is processed has a number of attributes that may be accessed

	Attribute

	Description

	asset_code

	The name of the asset the reading data relates to.

	timestamp

	The data and time FogLAMP first read this data

	user_timestamp

	The data and time the data for the data itself, this may differ from the timestamp above

	readings

	The set of readings for the asset, this is itself an object that contains a number of key/value pairs that are the data points for this reading.

In order to access an data point within the readings, for example one named temperature, it is a simple case of extracting the value of with temperature as its key.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 temp = reading['temperature']
 ...
 return readings

It is possible to write your Python code such that it does not know the data point names in advance, in which case you are able to iterate over the names as follows;

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 for attribute in reading:
 value = reading[attribute]
 ...
 return readings

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

Python27 filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the python27 plugin from the list of available plugins.

	Name your python27 filter, this should be the same name as the Python function you will provide.

	Click Next and you will be presented with the following configuration page

	[image: python35_1]

	Enter the configuration for your python27 filter

	Python script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will not be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the python27 filter and click on Done to activate your plugin

Example

The following example uses Python to create an exponential moving average plugin. It adds a data point called ema to every asset. It assumes a single data point exists within the asset, but it does not assume the name of that data point. A rate can be set for the EMA using the configuration of the plugin.

generate exponential moving average

import json

exponential moving average rate default value: include 7% of current value
rate = 0.07
latest ema value
latest = None

get configuration if provided.
set this JSON string in configuration:
{"rate":0.07}
def set_filter_config(configuration):
 global rate
 config = json.loads(configuration['config'])
 if ('rate' in config):
 rate = config['rate']
 return True

Process a reading
def doit(reading):
 global rate, latest

 for attribute in list(reading):
 if not latest:
 latest = reading[attribute]
 else:
 latest = reading[attribute] * rate + latest * (1 - rate)
 reading[b'ema'] = latest

process one or more readings
def ema(readings):
 for elem in list(readings):
 doit(elem['reading'])
 return readings

Examining the content of the Python, a few things to note are;

	The filter is given the name ema. This name defines the default method which will be executed, namely ema().

	The function ema is passed 1 or more readings to process. It splits these into individual readings, and calls the function doit to perform the actual work.

	The function doit walks through each attribute in that reading, updates a global variable latest with the latest value of the ema. It then adds an ema attribute to the reading.

	The function ema returns the modified readings list which then is passed to the next filter in the pipeline.

	set_filter_config() is called whenever the user changes the JSON configuration in the plugin. This function will alter the global variable rate that is used within the function doit.

 Python 3.5 Filter

Python 3.5 Filter

The foglamp-filter-python35 filter allows snippets of Python to be easily written that can be used as filters in FogLAMP. A similar filter exists that uses Python 2.7 syntax, the foglamp-filter-python27 filter. A Python code snippet will be called with sets of asset readings as they or read or processed in a filter pipeline. The data appears in the Python code as a JSON document passed as a Python Dict type.

The user should provide a Python function whose name matches the name given to the plugin when added to the filter pipeline of the south service or north task, e.g. if you name your filter myPython then you should have a function named myPython in the code you enter. This function is send a set of readings to process and should return a set of processed readings. The returned set of readings may be empty if the filter removes all data.

A general code syntax for the function that should be provided is;

def myPython(readings):
 for elem in list(readings):
 ...
 return readings

Each element that is processed has a number of attributes that may be accessed

	Attribute

	Description

	asset_code

	The name of the asset the reading data relates to.

	timestamp

	The data and time FogLAMP first read this data

	user_timestamp

	The data and time the data for the data itself, this may differ from the timestamp above

	readings

	The set of readings for the asset, this is itself an object that contains a number of key/value pairs that are the data points for this reading.

In order to access an data point within the readings, for example one named temperature, it is a simple case of extracting the value of with temperature as its key.

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 temp = reading['temperature']
 ...
 return readings

It is possible to write your Python code such that it does not know the data point names in advance, in which case you are able to iterate over the names as follows;

def myPython(readings):
 for elem in list(readings):
 reading = elem['readings']
 for attribute in reading:
 value = reading[attribute]
 ...
 return readings

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

Python35 filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the python35 plugin from the list of available plugins.

	Name your python35 filter, this should be the same name as the Python function you will provide.

	Click Next and you will be presented with the following configuration page

	[image: python35_1]

	Enter the configuration for your python35 filter

	Python script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will not be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the python35 filter and click on Done to activate your plugin

Example

The following example uses Python to create an exponential moving average plugin. It adds a data point called ema to every asset. It assumes a single data point exists within the asset, but it does not assume the name of that data point. A rate can be set for the EMA using the configuration of the plugin.

generate exponential moving average

import json

exponential moving average rate default value: include 7% of current value
rate = 0.07
latest ema value
latest = None

get configuration if provided.
set this JSON string in configuration:
{"rate":0.07}
def set_filter_config(configuration):
 global rate
 config = json.loads(configuration['config'])
 if ('rate' in config):
 rate = config['rate']
 return True

Process a reading
def doit(reading):
 global rate, latest

 for attribute in list(reading):
 if not latest:
 latest = reading[attribute]
 else:
 latest = reading[attribute] * rate + latest * (1 - rate)
 reading[b'ema'] = latest

process one or more readings
def ema(readings):
 for elem in list(readings):
 doit(elem['reading'])
 return readings

Examining the content of the Python, a few things to note are;

	The filter is given the name ema. This name defines the default method which will be executed, namely ema().

	The function ema is passed 1 or more readings to process. It splits these into individual readings, and calls the function doit to perform the actual work.

	The function doit walks through each attribute in that reading, updates a global variable latest with the latest value of the ema. It then adds an ema attribute to the reading.

	The function ema returns the modified readings list which then is passed to the next filter in the pipeline.

	set_filter_config() is called whenever the user changes the JSON configuration in the plugin. This function will alter the global variable rate that is used within the function doit.

 Rate Filter

Rate Filter

The foglamp-filter-rate plugin that can be used to reduce the rate a reading is stored
until an interesting event occurs. The filter will read data at full
rate from the input side and buffer data internally, sending out averages
for each value over a time frame determined by the filter configuration.

The user can provide either one or two simple expressions that will be evaluated to
form a trigger for the filter. One expressions will set the trigger and
the other will clear it. When the trigger is set then the filter will
no longer average the data over the configured time period, but will
instead send the full bandwidth data out of the filter. If the second expression, the
one that clears the full rate sending of data is omitted then the full rate is
cleared as soon as the trigger expression returns false. Alternatively the filter can be
configured to clear the sending of full rate data after a fixed time.

The filter also allows a pre-trigger time to be configured. In this
case it will buffer this much data internally and when the trigger is
initially set this pre-buffered data will be sent. The pre-buffered data
is discarded if the trigger is not set and the data gets to the defined
age for holding pre-trigger information.

Rate filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the rate plugin from the list of available plugins.

	Name your rate filter.

	Click Next and you will be presented with the following configuration page

	[image: rate_1]

	Configure your rate filter

	Trigger Expression: An expression to set the trigger for full rate data

	Terminate ON: The mechanism to stop full rate forwarding, this may be another expression or a time window

	[image: rate_2]

	End Expression: An expression to clear the trigger for full rate data, if left blank this will simply be the trigger filter evaluating to false

	Full rate time (ms): The time window, in milliseconds to forward data at the full rate

	Pre-trigger time (ms): An optional pre-trigger time expressed in milliseconds

	Reduced collection rate: The nominal data rate to send data out. This defines the period over which is outgoing data item is averaged.

	Rate Units: The units that the reduced collection rate is expressed in; per second, minute, hour or day

	[image: rate_3]

	Exclusions: A set of asset names that are excluded from the rate limit processing and always sent at full rate

	Enable your filter and click Done

For example if the filter is working with a SensorTag and it reads the tag
data at 10ms intervals but we only wish to send 1 second averages under
normal circumstances. However if the X axis acceleration exceed 1.5g
then we want to send full bandwidth data until the X axis acceleration
drops to less than 0.2g, and we also want to see the data for the 1
second before the acceleration hit this peak the configuration might be:

	Nominal Data Rate: 1, data rate unit “per second”

	Trigger set expression: X > 1.5

	Trigger clear expression: X < 0.2

	Pre-trigger time (mS): 1000

The trigger expression uses the same expression mechanism, ExprTk as the
foglamp-south-expression, foglamp-filter-expression and foglamp-filter-threshold plugins

Expression may contain any of the following…

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

	Equalities & Inequalities (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

Note

This plugin is designed to work with streams with a single asset in the stream, there is no mechanism in the expression syntax to support multiple asset names.

 Rename Filter

Rename Filter

The foglamp-filter-rename filter that can be used to modify the name of an asset, datapoint or both. It may be used either in South services or North services or North tasks.

To add a Rename filter

	Click on the Applications add icon for your service or task.

	Select the rename plugin from the list of available plugins.

	Name your Rename filter.

	Click Next and you will be presented with the following configuration page

	Configure the plugin

	[image: rename]

	Operation: Search and replace operation be performed on asset name, datapoint name or both

	Find: A regular expression to match for the given operation

	Replace With: A substitution string to replace the matched text with

	Enable the filter and click on Done to activate it

Example

The simplest following example perform on given below reading object

{
 "readings": {
 "sinusoid": -0.978147601,
 "a": {
 "sinusoid": "2.0"
 }
 },
 "asset": "sinusoid",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace an asset apply a configuration would be as follows

	Operation : asset

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sinusoid": -0.978147601,
 "a": {
 "sinusoid": 2.0
 }
 },
 "asset": "sin",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace a datapoint apply a configuration would be as follows

	Operation : datapoint

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sin": -0.978147601,
 "a": {
 "sin": 2.0
 }
 },
 "asset": "sinusoid",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

	To replace both asset and datapoint apply a configuration would be as follows

	Operation : both

	Find : sinusoid

	Replace With : sin

Output

{
 "readings": {
 "sin": -0.978147601,
 "a": {
 "sin": 2.0
 }
 },
 "asset": "sin",
 "id": "a1bedea3-8d80-47e8-b256-63370ccfce5b",
 "ts": "2021-06-28 14:03:22.106562+00:00",
 "user_ts": "2021-06-28 14:03:22.106435+00:00"
}

 Replace Filter

Replace Filter

The foglamp-filter-replace is a filter that allows an be used to replace all occurrence of a set of characters with a single replacement character. This can be used to change reserved characters in the names of assets and datapoints.

	[image: replace]

	Replace: The set of reserved characters to be replaced.

	With: The character to replace each occurrence of the above characters with

 Root Mean Squared (RMS) Filter

Root Mean Squared (RMS) Filter

The foglamp-filter-rms filter is designed to accept some periodic data such as a sample electrical waveform, audio data or vibration data and perform a Root Mean Squared, RMS operation on that data to supply power of the waveform. The filter can also return the peak to peak amplitude f the waveform over the sampled period and the crest factor of the waveform.

Note

peak values may be less than individual values of the input if the asset value does not fall to or below zero. Where a data value swings between negative and positive values then the peak value will be greater than the maximum value in the data stream. For example if the minimum value of a data point in the sample set is 0.3 and the maximum is 3.4 then the peak value will be 3.1. If the maximum value is 2.4 and the minimum is zero then the peak will be 2.4. If the maximum value is 1.7 and the minimum is -0.5 then the peak value will be 2.2.

RMS, also known as the quadratic mean, is defined as the square root of the mean square (the arithmetic mean of the squares of a set of numbers).

Peak to peak, is the difference between the smallest value in the sampled data and the highest, this give the maximum amplitude variation during the period sampled.

Crest factor is a parameter of a waveform, showing the ratio of peak values to the effective value. In other words, crest factor indicates how extreme the peaks are in a waveform. Crest factor 1 indicates no peaks, such as direct current or a square wave. Higher crest factors indicate peaks, for example sound waves tend to have high crest factors.

The user may also choose to include or not the raw data that is used to calculate the RMS values via a switch in the configuration.

Where a data stream has multiple assets within it the RMS filter may be limited to work only on those assets whose name matches a regular expression given in the configuration of the filter. The default for this expression is .*, i.e. all assets are processed.

RMS filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the rms plugin from the list of available plugins.

	Name your RMS filter.

	Click Next and you will be presented with the following configuration page

	[image: rms_1]

	Configure your RMS filter

	Sample size: The number of data samples to perform a calculation over.

	RMS Asset name: The asset name to use to output the RMS values. “%a” will be replaced with the original asset name.

	Include Peak Values: A switch to include peak to peak measurements for the same data set as the RMS measurement.

	Include Crest Values: A switch to include crest measurements for the same data set as the RMS measurement.

	Include Raw Data: A switch to include the raw input data in the output.

	Asset Filter: A regular expression to limit the asset names on which this filter operations. Useful when multiple assets appear in the input data stream as it allows data which is not part of the periodic function that is being examined to be excluded.

 Scale Filter

Scale Filter

The foglamp-filter-scale plugin is a simple filter that allows a scale factor and an offset to be applied to numerical data. It’s primary uses are for adjusting values to match different measurement scales, for example converting temperatures from Centigrade to Fahrenheit or when a sensor reports a value in non-base units, e.g. 1/10th of a degree.

When adding a scale filter to either the south service or north task, via the Add Application option of the user interface, a configuration page for the filter will be shown as below;

	[image: scale]

The configuration options supported by the scale filter are detailed in the table below

	Setting

	Description

	Scale Factor

	The scale factor to multiply the numeric values by

	Constant Offset

	A constant to add to all numeric values after applying the scale

	Asset filter

	This is useful when applying the filter in the north, it allows
the filter to be applied only to those assets that match the
regular expression given. If left blank then the filter is
applied to all assets/

 Scale Set Filter

Scale Set Filter

The foglamp-filter-scale-set plugin is a filter that allows a scale factor and an offset to be applied to numerical data where an asset has multiple data points. It is very similar to the foglamp-filter-scale filter, which allows a single scale and offset to be applied to all assets and data points. It’s primary uses are for adjusting values to match different measurement scales, for example converting temperatures from Centigrade to Fahrenheit or when a sensor reports a value in non-base units, e.g. 1/10th of a degree.

Scale set filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the scale-set plugin from the list of available plugins.

	Name your scale-set filter.

	Click Next and you will be presented with the following configuration page

	[image: scaleset_1]

	Enter the configuration for your change filter

	Scale factors: A JSON document that defines a set of factors to apply. It is an array of JSON objects that define the scale factor and offset, a regular expression that is matched against the asset name and another that matches the data point name within the asset.

	Name

	Description

	asset

	A regular expression to match against the asset name. The scale factor is only
applied to assets whose name matches this regular expression.

	datapoint

	A regular expression to match against the data point name within a matching asset.
The scale factor is only applied to assets whose name matches this regular expression.

	scale

	The scale factor to apply to the numeric data.

	offset

	The offset to add to the matching numeric data.

	Enable the scale-set filter and click on Done to activate your plugin

Example

In the following example we have an asset whose name is environment which contains two data points; temperature and humidity. We wish to allow two different scale factors and offsets to these two data points whilst not affecting assets of any other name in the data stream. We can accomplish this by using the following JSON document in the plugin configuration;

{
 "factors" : [
 {
 "asset" : "environment",
 "datapoint" : "temperature",
 "scale" : 1.8,
 "offset" : 32
 },
 {
 "asset" : "environment",
 "datapoint" : "humidity",
 "scale" : 0.1,
 "offset" : 0
 }
]
}

If instead we had multiple assets that contain temperature and humidity we can accomplish the same transformation on all these assets, whilst not affecting any other assets, by changing the asset regular expression to something that matches more asset names;

{
 "factors" : [
 {
 "asset" : ".*",
 "datapoint" : "temperature",
 "scale" : 1.8,
 "offset" : 32
 },
 {
 "asset" : ".*",
 "datapoint" : "humidity",
 "scale" : 0.1,
 "offset" : 0
 }
]
}

 Sigma Data Cleansing Filter

Sigma Data Cleansing Filter

The foglamp-filter-sigmacleanse filter is designed to cleanse data in a stream by removing outliers from the data stream. The method used to remove these outliers is to build an average and standard deviation for the data over time and remove any data that differs by more than a certain factor of the standard deviation from that average.

The plugin is designed to be used in situations when a sensor or item of equipment produces occasional anomalous results, these Will be removed from the data passed onward within the system to provide a cleaner data stream. Care should be taken however that these values that are removed do represent sensor anomalies and are not the result of problems with the condition that is being monitored. If a sensor produces a high percentage of anomalous results then it should be considered for replacement.

In order to monitor the anomalous rates the plugin can optional produce an hourly statistics report that will show the number of readings hat have been forwarded as good and the number that have been discarded.

The method used to determine if a value is anomalous is based on the premise that data from a given sensor will follow a normal distribution from the mean value that is sampled over time. The probably of a value being valid reduces as the value differs more greatly from the mean value. This gives rise to the classical bell shaped distribution of values as shown below.

	[image: sigma_2]

It can be seen from the diagram above how the probability drops as the values moves away from the mean, the sigma values here are the standard deviations observed for good data samples. Outlier values that are discarded do not contribute to the calculation of the standard deviation.

To add a sigma cleansing filter to your service:

	Click on the Applications add icon for your service or task.

	Select the sigmacleanse plugin from the list of available plugins.

	Name your cleansing filter.

	Click Next and you will be presented with the following configuration page

	[image: sigma_1]

	Configure your sigma cleanse filter

	Sample Size: The number of hours over which an initial mean and standard deviation is built before any cleansing commences

	Sigma: The factor to apply to the standard deviation, the default is 3. Any value that differs from the mean by more than 3 * sigma will be removed.

	Statistics Asset: If this is not empty a statistics asset will be added every hour that details the number of readings that have been forwarded by the filter and the number removed. The name is that asset matches the value added here.

	Enable your filter and click Done

 Simple Python Filter

Simple Python Filter

The foglamp-filter-simple-python plugin allows very simple Python code to be used as a filter. A user may effectively write expressions in Python and have them execute in a filter.

The data is available within your Python code as a variable, named reading for each asset. You may access each data point within the asset by indexing the reading with the data point name. For example if your asset has two data points, voltage and current, then you would access these two values as

voltage = reading[b'voltage']
current = reading[b'current']

Using this type of filter it is possible to modify values of data points within an asset, remove data points in an asset or add new data points to an asset. It is not possible to remove assets or add new assets. The filter uses a Python 3 run time environment, therefore Python 3 syntax should be used.

The following examples show how to filter the readings data,

	Change datapoint value

reading[b'point_1'] = reading[b'point_1'] * 2 + 15

	Create a new datapoint while filtering

reading[b'temp_fahr'] = reading[b'temperature'] * 9 / 5 + 32

	Generate an exponential moving average (ema)

In this case we need to parse some data while filtering current data set the filter receives in input. A global ‘user_data’ empty dictionary is available to the Python interpreter and key values can be easily added. This illustrates the ability to maintain state within your filter.

global user_data
if not user_data:
 user_data['latest'] = None
for attribute in list(reading):
 if not user_data['latest']:
 user_data['latest'] = reading[attribute]
 user_data['latest'] = reading[attribute] * 0.07 + user_data['latest'] * (1 - 0.07)
 reading[b'ema'] = user_data['latest']

Simple Python filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the simple-python plugin from the list of available plugins.

	Name your python filter.

	Click Next and you will be presented with the following configuration page

	[image: python_1]

	Configure your simple Python filter

	Python Code: Enter the code required for your filter.

	Enable your filter and click Done

 Statistics Filter

Statistics Filter

The foglamp-filter-statistics filter is designed to accept data from one or more asset and produces statistics over specified time intervals, for example produce the mean, standard deviation and variance for 100 milliseconds samples of the data. The statistics that can be produced are;

	mean - the average of all the values in the time period calculated by adding up all the values and dividing by the number of values.

	mode - the number that appears most often in the time period.

	median - the median is found by sorting all the values in the time period and then choosing the middle number in this sorted set

	minimum - the minimum value that appears within the time period

	maximum - the maximum value that appears within the time period

	standard deviation - the standard deviation measures the spread of the numbers above and below the mean value

	variance - the variance is the average of the squared differences from the mean value calculated over the time period

Statistics filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the statistics plugin from the list of available plugins.

	Name your statistics filter.

	Click Next and you will be presented with the following configuration page

	[image: statistics_1]

	Configure your statistics filter

	Mean: A toggle that controls inclusion of the mean value

	Mode: A toggle that controls inclusion of the mode value

	Median: A toggle that controls inclusion of the median value

	Minimum: A toggle that controls inclusion of the minimum value

	Maximum: A toggle that controls inclusion of the maximum value

	Standard Deviation: A toggle that controls inclusion of the standard deviation value

	Variance: A toggle that controls inclusion of the variance value

	Enable your filter and click Done

 Threshold Filter

Threshold Filter

The foglamp-filter-threshold plugin is a filter that is used to control the forwarding of data within FogLAMP. Its use is to only allow data to be stored or forwarded if a condition about that data is true. This can save storage or network bandwidth by eliminating data that is of no interest.

The filter uses an expression, that is entered by the user, to evaluate if data should be forwarded, if that expression evaluates to true then the data is forwarded, in the case of a south service this would be to the FogLAMP storage. In the case of a north task this would be to the upstream system.

Note

If the threshold filter is part of a chain of filters and the data is not forwarded by the threshold filter, i.e. the expression evaluates to false, then the following filters will not receive the data.

If an asset in the case of a south service, or data stream in the case of a north task, has other data points or assets that are not part of the expression, then they too are subject to the threshold. If the expression evaluates to false then no assets will be forwarded on that stream. This allows a single value to control the forwarding of data.

Another example use might be to have two north streams, one that uses a high cost, link to send data when some condition that requires close monitoring occurs and the other that is used to send data by a lower cost mechanism when normal operating conditions apply.

E.g. We have a temperature critical process, when the temperature is above 80 degrees it most be closely monitored. We use a high cost link to send data north wards in this case. We would have a north task setup that has the threshold filter with the condition:

temperature >= 80

We then have a second, lower cost link with a north task using the threshold filter with the condition:

temperature < 80

This way all data is sent once, but data is sent in an expedited fashion if the temperature is above the 80 degree threshold.

Threshold filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the threshold plugin from the list of available plugins.

	Name your threshold filter.

	Click Next and you will be presented with the following configuration page

	[image: threshold]

	Enter the expression to control forwarding in the box labeled Expression

	Enable the filter and click on Done to activate it

Expressions

The foglamp-filter-threshold plugin makes use of the ExprTk library to do run time expression evaluation. This library provides a rich mathematical operator set, the most useful of these in the context of this plugin are;

	Comparison operators (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

Within the expression the data points of the asset become symbols that may be used; therefore if an asset contains values “voltage” and “current” the expression will contain those as symbols and an expression of the form

voltage * current > 1000

can be used to determine if power (voltage * current) is greater than 1kW.

 Vibration Features Filter

Vibration Features Filter

The foglamp-filter-vibration_features filter collects readings for configured observation interval, then calculates statistics on these readings
and puts these statistics into a new reading.

	mean - the average of all the values in the time period calculated by adding up all the values and dividing by the number of values.

	median - the median is found by sorting all the values in the time period and then choosing the middle number in this sorted set

	standard deviation - the standard deviation measures the spread of the numbers above and below the mean value

	variance - the variance is the average of the squared differences from the mean value calculated over the time period

	RMS - the root mean squared of the waveform

	kurtosis - is a measure of the combined sizes of the two tails. It measures the amount of probability in the tails.

Vibration feature filters are added in the same way as any other filters.

	Click on the Applications add icon for your service or task.

	Select the vibration_features plugin from the list of available plugins.

	Name your vibration feature filter.

	Click Next and you will be presented with the following configuration page

	[image: vibration_1]

	Configure your vibration filter

	Asset name: The name of the asset to create. This is the asset that will hold the vibration feature data.

	Observation interval (ms): The interval over which the statistics are compiled.

	Enable your filter and click Done

 FogLAMP Notification Rule Plugins

FogLAMP Notification Rule Plugins

	Threshold Rule

	Moving Average Rule

	Expression Rule

	Simple-Sigma Rule

 Threshold Rule

Threshold Rule

The threshold rule is used to detect the value of a data point within an asset going above or below a set threshold.

The configuration of the rule allows the threshold value to be set, the operation and the datapoint used to trigger the rule.

	[image: threshold]

	Asset name: The name of the asset that is tested by the rule.

	Datapoint Name: The name of the datapoint in the asset used for the test.

	Condition: The condition that is being tested, this may be one of >, >=, <= or <.

	Trigger value: The value used for the test.

	Evaluation data: Select if the data evaluate is a single value or a window of values.

	Window evaluation: Only valid if evaluation data is set to Window. This determines if the value used in the rule evaluation is the average, minimum or maximum over the duration of the window.

	Time window: Only valid if evaluation data is set to Window. This determines the time span of the window.

 Moving Average Rule

Moving Average Rule

The foglamp-rule-average plugin is a notifcation rule that is used to detect when a value moves outside of the determined average by more than a specified percentage. The plugin only monitors a single asset, but will monitor all data points within that asset. It will trigger if any of the data points within the asset differ by more than the configured percentage, an average is maintained for each data point separately.

During the configuration of a notification use the screen presented to choose the average plugin as the rule.

	[image: average_1]

The next screen you are presented with provides the configuration options for the rule.

	[image: average_2]

The Asset entry field is used to define the single asset that the plugin should monitor.

The Deviation % defines how far away from the observed average the current value should be in order to considered as triggering the rule.

	[image: average_3]

The Direction entry is used to define if the rule should trigger when the current value is above average, below average or in both cases.

	[image: average_4]

The Average entry is used to determine what type of average is used for the calculation. The average calculated may be either a simple moving average or an exponential moving average. If an exponential moving average is chosen then a second configuration parameter, EMA Factor, allows the setting of the factor used to calculate that average.

Exponential moving averages give more weight to the recent values compared to historical values. The smaller the EMA factor the more weight recent values carry. A value of 1 for EMA Factor will only consider the most recent value.

Note

The Average rule is not applicable to all data, only simple numeric values are considered and those values should not deviate with an average of 0 or close to 0 if good results are required. Data points that deviate wildly are also not suitable for this plugin.

 Expression Rule

Expression Rule

The foglamp-rule-simple-expression is a notification rule plugin that evaluates a user defined function to determine if a notification has triggered or not. The rule will work with a single asset, but does allow access to all the data points within the asset.

During the configuration of a notification use the screen presented to choose the average plugin as the rule.

	[image: expression_1]

The next screen you are presented with provides the configuration options for the rule.

	[image: expression_2]

The Asset entry field is used to define the single asset that the plugin should monitor.

The Expression to apply defines the expression that will be evaluated each time the rule is checked. This should be a boolean expression that returns true when the rule is considered to have triggered. Each data point within the asset will become a symbol in the expression, therefore if your asset contains a data point called voltage, the symbol voltage can be used in the expression to obtain the current voltage reading. As an example to create an under voltage notification if the voltage falls below 48 volts, the expression to use would be;

voltage < 48

The trigger expression uses the same expression mechanism, ExprTk as the
foglamp-south-expression, foglamp-filter-expression and foglamp-filter-threshold plugins

Expression may contain any of the following…

	Mathematical operators (+, -, *, /, %, ^)

	Functions (min, max, avg, sum, abs, ceil, floor, round, roundn, exp, log, log10, logn, pow, root, sqrt, clamp, inrange, swap)

	Trigonometry (sin, cos, tan, acos, asin, atan, atan2, cosh, cot, csc, sec, sinh, tanh, d2r, r2d, d2g, g2d, hyp)

	Equalities & Inequalities (=, ==, <>, !=, <, <=, >, >=)

	Logical operators (and, nand, nor, not, or, xor, xnor, mand, mor)

 Simple-Sigma Rule

Simple-Sigma Rule

The foglamp-rule-simple-sigma is a notification rule plugin that uses the principle of normal distribution to trigger a notification if a value is found that is outside of the normal distribution. The normal distribution is discovered by taking the mean of all the values over time and calculating the standard deviation, or sigma, from that mean. Until the rule has built up a reasonable sample of data on which to calculate the mean and standard deviation the rule will not trigger. This reasonable sample is defined as a time period, in hours, for which the rule will simple sample the data to determine the mean and sigma values. The default time period for this is 1 hour, however it may be overridden.

Once a mean and standard deviation have been determined the rule will mode into a mode in which it will trigger. Whilst in triggering mode the rule will still refine the mean and standard deviation values. If a value is found in trigger mode that is more than a certain number of standard deviations from the mean, then the rule will trigger. The number of standard deviations is the sigma factor and defaults to 3.0, however the user can configure this to be more or less than 3.0.

To use the Simple-Sigma plugin create your notification rule as normal, when selecting the rule to use select the Simple-Sigma rule and click on next. You will be presented with a dialog as below

	[image: sigma_1]

Configure the Simple-Sigma rule

	Asset name: The asset name to monitor with the rule

	Sigma Factor: The factor to use for determining range, a factor of 3.0 will trigger when a value is more the 3.0 * Sigma from the current mean

	Sample Size: The number of hours to build a mean and standard deviation before the rule will trigger.

Click on Next and complete the configuration of your notification.

 FogLAMP Notification Delivery Plugins

FogLAMP Notification Delivery Plugins

	Amazon Alexa Notification

	Asset Notification

	Configuration Update

	Email Notifications

	Google Chat

	IFTTT Delivery Plugin

	Jira Ticket Creation
	Text Substitution

	JSON Configuration Update
	JSON Path

	Management Poll Notification
	Plugin Uses

	MQTT Notification

	Conditional Forwarding

	Operation Notification

	Python 3 Script
	Example Script

	Set Point Control Notification
	Trigger Values

	Slack Messages

	Telegram Messages

	Zendesk Ticket Creation
	Text Substitution

 Amazon Alexa Notification

Amazon Alexa Notification

The foglamp-notify-alexa notification delivery plugin sends notifications via Amazon Alexa devices using the Alexa NotifyMe skill.

When you receive a notification Alexa will make a noise to say you have a new notification
and the green light on your Alexa device will light to say you have waiting notifications.
To hear your notifications simply say “Alexa, read my notifications”

To enable notifications on an Alexa device

	You must enable the NotifyMe skill on your Amazon Alexa device.

	Link this skill to your Amazon account

	NotifyMe will send you an access code that is required to configure this plugin.

Once you have created your notification rule and move on to the delivery mechanism

	Select the alexa plugin from the list of plugins

	Click Next

	[image: alexa_1]

	Configure the plugin

	Access Code: Paste the access code you received from the NotifyMe application here

	Title: This is the title that the Alexa device will read to you

	Enable the plugin and click Next

	Complete your notification setup

When you notification triggers the Alexa device will read the title text to you followed by either “Notification has triggered” or “Notification has cleared”.

 Asset Notification

Asset Notification

The foglamp-notify-asset notification delivery plugin is unusually in that it does not notify an external system, instead it creates a new asset which is then processed like any other asset within FogLAMP. This plugin is useful to inform up stream systems that a event has occurred and allow them to take action or merely as a way to have a record of a condition occurring which may not require any further actions.

Once you have created your notification rule and move on to the delivery mechanism

	Select the asset plugin from the list of plugins

	Click Next

	[image: asset_1]

	Now configure the asset delivery plugin

	Asset: The name of the asset to create.

	Description: A textual description to add to the asset

	Enable the plugin and click Next

	Complete your notification setup

The asset that will be created when the notification triggers will contain

	The timestamp of the trigger event

	Three data points

	rule: The name of the notification that triggered this asset creation

	description: The textual description entered in the configuration of the delivery plugin

	event: This will be one of triggered or cleared. If the notification type was not set to be toggled then the cleared event will not appear. If toggled was set as the notification type then there will be a triggered value in the asset created when the rule triggered and a cleared value in the asset generated when the rule moved from the triggered to untriggered state.

 Configuration Update

Configuration Update

The foglamp-notify-config plugin is designed to allow a notification to alter the configuration of one of the configuration items within the local FogLAMP.

The plugin can be used to trigger changes to the way data is collected, for example by altering the readingsPerSec item in a south server Advanced category. It is not limited to this however and could equally be used to effect some configuration of a filter, for example to change a scale factor or threshold. It may also change configuration of notification rule or delivery plugins.

Once you have created your notification rule and moved on to the delivery mechanism

	Select the config plugin from the list of plugins

	Click Next

	[image: config_1]

	Configure the delivery plugin

	Category: The name of the configuration category to be updated.

	Item: The name of the item within the configuration category to be updated.

	Trigger Value: The value to set the item to when an notification is triggered.

	Clear Value: The value to set the item to when the notification is cleared. Note you must set the notification type to toggled if you wish to use a Clear Value.

	Enable the plugin and click Next

	Complete your notification setup

 Email Notifications

Email Notifications

The foglamp-notify-email delivery notification plugin allows notifications to be delivered as email messages. The plugin uses an SMTP server to send email and requires access to this to be configured as part of configuring the notification delivery method.

During the creation of your notification select the email notification plugin from the list of available notification mechanisms. You will be prompted with a configuration dialog in which to enters details of your SMTP server and of the email you wish to send.

	[image: email_1]

	To address: The email address to which the notification will be sent

	To: A textual name for the recipient of the email

	Subject: A Subject to put in the email message

	From address: A from address to use for the email message

	From name: A from name to include in the email

	SMTP Server: The address of the SMTP server to which to send messages

	SMTP Port: The port of your SMTP server

	SSL/TLS: A toggle to control if SSL/TLS encryption should be used when communicating with the SMTP server

	Username: A username to use to authenticate with the SMTP server

	Password: A password to use to authenticate with the SMTP server.

 Google Chat

Google Chat

The foglamp-notify-google-hangouts plugin allows notifications to be delivered to the Google chat platform. The notification are delivered into a specific chat room within the application, in order to allow access to the chat room you must create a webhook for sending data to that chatroom.

To create a webhook

	Go to the Google Chat page in your browser

	[image: chat_1]

	Select the chat room you wish to use or create a new chat room

	In the menu at the top of the screen select Configure webhooks

	[image: chat_2]

	Enter a name for your webhook and optional avatar and click Save

	[image: chat_3]

	Copy the URL that appears under your webhook name, you can use the copy icon next to the URL to place it in the clipboard

	[image: chat_6]

	Close the webhooks window by clicking outside the window

Once you have created your notification rule and move on to the delivery mechanism

	Select the Hangouts plugin from the list of plugins

	Click Next

	[image: chat_4]

	Now configure the asset delivery plugin

	Google Hangout Webhook URL: Paste the URL obtain above here

	Message Text: Enter the message text you wish to send

	Enable the plugin and click Next

	Complete your notification setup

A message will be sent to this chat room whenever a notification is triggered.

	[image: chat_5]

 IFTTT Delivery Plugin

IFTTT Delivery Plugin

The foglamp-notify-ifttt is a notification delivery plugin designed to trigger an action on the If This Than That IoT platform. IFTTT allows the user to setup a webhook that can be used to trigger processing on the platform. The webhook could be sending an IFTTT notification to a destination not support by any FogLAMP plugin to controlling a device that is controllable via IFTTT.

In order to use the IFTTT webhook you must obtain a key from IFTTT by visiting your IFTTT account

	Select the “My Applets” page from your account pull down menu

	[image: ifttt_1]

	Select “New Applet”

	Click on the blue “+ this” logo

	Choose the service Webhooks

	Click on the blue box “Receive a web request”

	Enter an “Event Name”, this may be of your choosing and will be put in the configuration entry ‘Trigger’ for the FogLAMP plugin

	Click on the “+ that” logo

	Select the action you wish to invoke

Once you have setup your webhook on IFTTT you can now proceed to setup the FogLAMP delivery notification plugin. Create you notification, choose and configure your notification rule. Select the IFTTT delivery plugin and click on Next. You will be presented with the IFTTT plugin configuration page.

	[image: ifttt_2]

There are two important items to be configured

	IFTTT Trigger: This is the Maker Event that you used in IFTTT when defining the action that the webhook should trigger.

	IFTTT Key: This is the webhook key you obtain from the IFTTT platform.

Enable the delivery and click on Next to move to the final stage of completing your notification.

 Jira Ticket Creation

Jira Ticket Creation

The foglamp-notify-jira delivery notification plugin allows notifications to be used to create tickets within Jira. The tickets are created within a specified project with a summary, description and other information supplied by FogLAMP.

To obtain an API token from Jira

	Visit the Jira API tokens page

	Select Create API token

	Enter a name for your application, this must be unique for each FogLAMP Jira application you create

	Click on Create

Once you have created your notification rule and move on to the delivery mechanism

	Select the jira plugin from the list of plugins

	Click Next

	[image: jira_1]

	Configure the delivery plugin

	Hostname: The hostname where your Jira instance is installed. This may be a local instance or a cloud instance.

	Project: The project into which you are creating the Jira tickets. The project name should be the one that appears as projectKey in the URL bar when browsing the Jira boards.

	User: Your Jira user name, this is the name of the account you used to create the API token

	API Token: The API token you created above

	Summary: The text to add into the ticket summary, this may include text substitutions (see below).

	Description: The text to add into the ticket description, this may include text substitution (wee below).

	Type: The issue type to create. This must be the name of one of the types that is valid for your Jira project.

	Additional Fields: This is a JSON document that contains a number of key/value pairs, each of these pairs is a field name and content to add to the ticket. Text substitutions may be applied here also.

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers you a Jira ticket will be created.

	[image: jira_2]

Text Substitution

Text markers may be used to substitution text with the fields in the Jira ticket. The markers supported are

	%MESSAGE%: this is replaced with the message generated in the notification system

	%REASON%: this is replaced with the reason for the notification, it may be the string triggered or cleared.

	%TIMESTAMP%: this is replaced with the timestamp of the reading data that caused the notification to trigger.

 JSON Configuration Update

JSON Configuration Update

The foglamp-notify-jsonconfig plugin is designed to allow a notification to alter the configuration of one of the JSON configuration items within the local FogLAMP.

The plugin can be used to trigger changes to the way data is collected by altering individual items within a complex JSON configuration items. The delivery plugin allows you to set a value when the notification is raised and a different value when it is cleared.

Once you have created your notification rule and moved on to the delivery mechanism

	Select the config plugin from the list of plugins

	Click Next

	[image: config_1]

	Configure the delivery plugin

	Category: The name of the configuration category to be updated.

	Item: The name of the item within the configuration category to be updated.

	JSON Path: The JSON path of the object that contains the item to be modified.

	Property: The name of the JSON property to modify.

	Trigger Value: The value to set the item to when an notification is triggered.

	Clear Value: The value to set the item to when the notification is cleared. Note you must set the notification type to toggled if you wish to use a Clear Value.

	Enable the plugin and click Next

	Complete your notification setup

JSON Path

A subset of the full JSON Path expressions are supported in this plugins. Each path element is proceeded by a / character and may be one of

	Literals: A literal object name within the JSON document. E.g. /a/b/c

	An Array Index: An absolute index within an array. E.g. a[2]

	A conditional test: A property value to match within an array or object. a[prop==value]

To match the object under the registers element within the map element an expression would be of the form

/map/registers

To match the first element in the array called assets under the exclusions object the expression would be

/exclusions/assets[0]

To match the object that contains a property called id whose values in QTE123 within the connections object the expression would be

/connections[id=="QTE123]

 Management Poll Notification

Management Poll Notification

The foglamp-notify-management notification delivery plugin is designed to trigger the FogMan agent microservice of the current FogLAMP to poll its FogMan to retrieve any configuration updates for this FogLAMP.

Once you have created your notification rule and move on to the delivery mechanism

	Select the management plugin from the list of plugins

	Click Next

	There is no specific configuration for this plugin

	Enable the plugin and click Next

	Complete your notification setup

Plugin Uses

The plugin is designed for an environment whereby the updates of configuration of the FogLAMP are coordinated with the state of the equipment that is being monitored by the FogLAMP. This might be because you may wish to prevent updates from occurring during critical periods of operation or maybe because the FogLAMP is monitoring the network connectivity and you wish to synchronize updates with network availability.

 MQTT Notification

MQTT Notification

The foglamp-notify-mqtt notification delivery plugin sends notifications via an MQTT broker. The MQTT topic and the payloads to send when the notificstion triggers or is cleared are configurable.

Once you have created your notification rule and move on to the delivery mechanism

	Select the mqtt plugin from the list of plugins

	Click Next

	[image: mqtt_1]

	Configure the plugin

	MQTT Broker: The URL of your MQTT broker.

	Topic: The MQTT topic on which to publish the messages.

	Trigger Payload: The payload to send when the notification triggers

	Clear Payload: The payload to send when the notification clears

	Enable the plugin and click Next

	Complete your notification setup

 Conditional Forwarding

Conditional Forwarding

The foglamp-notify-north plugin is designed to allow conditional forwarding of data to an existing north application from within FogLAMP.

The scenario the plugin addresses is the need to send data to a system north of FogLAMP when a condition occurs. The sending is done via a standard FogLAMP north task and can use any plugin such as OMF, GCP, InfluxDB, etc. The condition used to send this data is monitored using the notification server, when the rule in the notification triggers we send data from the FogLAMP storage service to the specified north task.

The data that is send is based on the time the notification triggered and two configuration parameters, pre-trigger and post-trigger times. The pre-trigger setting control how long before the event the data is sent and the post-trigger for how long after the event data is sent.

The data that is sent may be anything that is buffered in the Foglamp storage service. A list of assets to send may be configured as part of the plugin configuration.

Once you have created your notification rule and move on to the delivery mechanism

	Select the North plugin from the list of plugins

	Click Next

	[image: north_1]

	Configure the delivery plugin

	North task name: This is the name of a north task to use for the sending of the data. The north task should have already been created but should be disabled.

	Assets to send: A JSON structure that contains the list of assets that should be sent via the north task. This list is a simple JSON array of asset names.

	Pre-trigger time: The length of time in seconds before the notification triggers for which data should be sent.

	Post-trigger time: The length of time in seconds after the notification triggers for which data should be sent.

	Block size: The size of the data block sent to the north service, this is a tuning parameter to throttle the data sent, under most circumstances it may be left as the default.

	Enable the plugin and click Next

	Complete your notification setup

 Operation Notification

Operation Notification

The foglamp-notify-operation notification delivery plugin is a mechanism by which a notification can be used to send a request to a south services to perform an operation.

Once you have created your notification rule and move on to the delivery mechanism

	Select the operation plugin from the list of plugins

	Click Next

	[image: setpoint_1]

	Configure the plugin

	Service: The name of the south service you wish to control

	Trigger Value: The operation payload to send to the south service when the rule triggers. This is the name of the operation to prform and a set of name, value pairs which are the optional parameters to pass that operations.

	Cleared Value: The operation payload to send to the south service when the rule clears. This is the name of the operation to prform and a set of name, value pairs which are the optional parameters to pass that operations.

	Enable the plugin and click Next

	Complete your notification setup

 Python 3 Script

Python 3 Script

The foglamp-notify-python35 notification delivery plugin allows a user supplied Python script to be executed when a notification is triggered or cleared. The script should be written in Python 3 syntax.

A Python script should be provided in the form of a function, the name of that function should match the name of the file the code is loaded form. E.g if you have a script to run which you have saved in a file called alert_light.py it should contain a function alert_light. ~that function is called with a message which is defined in notification itself as a simple string.

A second function may be provided by the Python plugin code to accept configuration from the plugin that can be used to modify the behavior of the Python code without the need to change the code. The configuration is a JSON document which is again passed as a Python Dict to the set_filter_config function in the user provided Python code. This function should be of the form

def set_filter_config(configuration):
 config = json.loads(configuration['config'])
 value = config['key']
 ...
 return True

Once you have created your notification rule and move on to the delivery mechanism

	Select the python35 plugin from the list of plugins

	Click Next

	[image: python_1]

	Configure the plugin

	Python Script: This is the script that will be executed. Initially you are unable to type in this area and must load your initial script from a file using the Choose Files button below the text area. Once a file has been chosen and loaded you are able to update the Python code in this page.

Note

Any changes made to the script in this screen will be written back to the original file it was loaded from.

	Configuration: You may enter a JSON document here that will be passed to the set_filter_config function of your Python code.

	Enable the plugin and click Next

	Complete your notification setup

Example Script

The following is an example script that flashes the LEDs on the Enviro pHAT board on a Raspberry Pi

from time import sleep
from envirophat import leds
def flash_leds(message):
 for count in range(4):
 leds.on()
 sleep(0.5)
 leds.off()
 sleep(0.5)

This code imports some Python libraries and then in a loop will turn the leds on and then off 4 times.

Note

This example will take 4 seconds to execute, unless multiple threads have been turned on for notification delivery this will block any other notifications from being delivered during that time.

 Set Point Control Notification

Set Point Control Notification

The foglamp-notify-setpoint notification delivery plugin is a mechanism by which a notification can be used to send set point control writes into south services which support set point control

Once you have created your notification rule and move on to the delivery mechanism

	Select the setpoint plugin from the list of plugins

	Click Next

	[image: setpoint_1]

	Configure the plugin

	Service: The name of the south service you wish to control

	Trigger Value: The set point control payload to send to the south service. This is a list of name, value pairs to be set within the service. These are set when the notification rule triggers.

	Cleared Value: The set point control payload to send to the south service. This is a list of name, value pairs to be set within the service. There are set when the notification rule clears.

	Enable the plugin and click Next

	Complete your notification setup

Trigger Values

The Trigger Value and Cleared Value are JSON documents that are sent to the set point entry point of the south service. The format of these is a set of name and value pairs that represent the data to write via the south service. A simple example would be as below

{
 "values": {
 "temperature" : "11",
 "rate" : "245"
 }
}

In this example we are setting two variables in the south service, one named temperature and the other named rate. In this example the values are constants defined in the plugin configuration. It is possible however to use values that are in the data that triggered the notification.

As an example of this assume we are controlling the speed of a fan based on the temperature of an item of equipment. We have a south service that is reading the temperature of the equipment, let’s assume this is in an asset called equipment which has a data point called temperature. We add a filter using the foglamp-filter-expression filter to calculate a desired fan speed. The expression we will use in this example is desiredSpeed = temperature * 100. This will case the asset to have a second data point called desiredSpeed.

We create a notification that is triggered if the desiredSpeed is greater than 0. The delivery mechanism will be this plugin, foglamp-notify-setpoint. We want to set two values in the south plugin speed to set the speed of the fan and run which controls if the fan is on or off. We set the Trigger Value to the following

{
 "values" : {
 "speed" : "$equipment.desiredSpeed$",
 "run" : "1"
 }
 }

In this case the speed value will be substituted by the value of the desiredSpeed data point of the equipment asset that triggered the notification to be sent.

 Slack Messages

Slack Messages

The foglamp-notify-slack delivery notification plugin allows notifications to be delivered as instant messages on the Slack messaging platform. The plugin uses a Slack webhook to post the message.

To obtain a webhook URL from Slack

	Visit the Slack API page

	Select Create New App

	Enter a name for your application, this must be unique for each FogLAMP slack application you create

	Select your Slack workspace in which to deliver your notification. If not already logged in you may need to login to your workspace

	Click on Create

	Select Incoming Webhooks

	Activate your webhook

	Add your webhook to the workspace

	Select the channel or individual to send the notification to

	Authorize your webhook

	Copy the Webhook URL which you will need when configuring the plugin

Once you have created your notification rule and move on to the delivery mechanism

	Select the slack plugin from the list of plugins

	Click Next

	[image: slack_1]

	Configure the delivery plugin

	Slack Webhook URL: Paste the URL you obtain above from the Slack API page

	Message Test: Static text that will appear in the slack message you receive when the rule triggers

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers you will receive messages in you Slack client on your desk top

	[image: slack_2]

and/or your mobile devices

	[image: slack_3]

 Telegram Messages

Telegram Messages

The foglamp-notify-telegram delivery notification plugin allows notifications to be delivered as instant messages on the Telegram messaging platform. The plugin uses Telegram BOT API, to use this you must create a BOT and obtain a token.

[image: ../../_images/botfather.jpg]
To obtain a Telegram BOT token

	Use the Telegram application to send a message to botfather.

	In your message send the text /start

	Then send the message /newbot

	Follow the instructions to name your BOT

	Copy your BOT token.

You now need to get a chat id

	In the Telegram application send a message to you chat BOT

	Run the following command at the your shell command line or use a web browser to go to the URL https://api.telegram.org/bot<YourBOTToken>/getUpdates

wget https://api.telegram.org/bot<YourBOTToken>/getUpdates

Examine the contents of the getUpdates file or the output from the web browser

	Extract the id from the “chat” JSON object

{"ok":true,"result":[{"update_id":562812724, "message":{"message_id":1,"from":{"id":1166366214,"is_bot":false,"first_name":"Mark","last_name":"Riddoch"},
"chat":{"id":1166366214,"first_name":"Mark","last_name":"Riddoch","type":"private"},"date":1588328344,"text":"start","entities":[{"offset":0,"length":6,"type":"bot_command"}]}}},

Once you have created your notification rule and move on to the delivery mechanism

	Select the Telegram plugin from the list of plugins

	Click Next

	[image: telegram_1]

	Configure the delivery plugin

	Telegram BOT API token: Paste the API token you received from botfather

	Telegram user chat_id: Paste the id field form the chat

	Telegram BOT API url Prefix: This is the fixed part of the URL used to send messages and should not be modified under normal circumstances.

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers you will receive messages Telegram application

	[image: telegram_2]

 Zendesk Ticket Creation

Zendesk Ticket Creation

The foglamp-notify-zendesk delivery notification plugin allows notifications to be used to create tickets within Zendesk. The tickets are created within a specified project with a summary, description and other information supplied by FogLAMP.

To obtain an API token from Zendesk

	Visit the api page

	Select Create API token

	Enter a name for your application, this must be unique for each FogLAMP Zendesk application you create

	Click on Create

Once you have created your notification rule and move on to the delivery mechanism

	Select the zendesk plugin from the list of plugins

	Click Next

	[image: zendesk_1]

	Configure the delivery plugin

	Subdomain: The subdomain where your Zendesk instance is installed.

	Subject: The subject for the new ticket that is created.

	Email: Your Zendesk registered email address, this is the name of the account you used to create the API token

	API Token: The API token for your email address. You must enable API token in your Zendesk account and create a token for FogLAMP to use.

	[image: zendesk_2]

	Comment: The text to add into the comment of the ticket, this may include text substitutions (see below).

	Additional Fields: This is a JSON document that contains a number of key/value pairs, each of these pairs is a field name and content to add to the ticket. Text substitutions may be applied here also.

	Enable the plugin and click Next

	Complete your notification setup

When the notification rule triggers a Zendesk ticket will be created.

Text Substitution

Text markers may be used to substitution text with the fields in the Zendesk ticket. The markers supported are

	%MESSAGE%: this is replaced with the message generated in the notification system

	%REASON%: this is replaced with the reason for the notification, it may be the string triggered or cleared.

	%TIMESTAMP%: this is replaced with the timestamp of the reading data that caused the notification to trigger.

 Index

Index

 A South Plugin Example In Python: the DHT11 Sensor

A South Plugin Example In Python: the DHT11 Sensor

Let’s try to put all the information together and write a plugin. We can continue to use the example of an inexpensive sensor, the DHT11, used to measure temperature and humidity, directly wired to a Raspberry PI. This plugin is available on github, FogLAMP DHT11 South Plugin.

First, here is a set of links where you can find more information regarding this sensor:

	DHT11 Product Description

	DHT11 Product Manual

	ADAFruit DHT Library

The Hardware

The DHT sensor is directly connected to a Raspberry PI 2 or 3. You may decide to buy a sensor and a resistor and solder them yourself, or you can buy a ready-made circuit that provides the correct output to wire to the Raspberry PI. This picture shows a DHT11 with resistor that you can buy online.

The sensor can be directly connected to the Raspberry PI GPIO (General Purpose Input/Output). An introduction to the GPIO and the pinset is available here. In our case, you must connect the sensor on these pins:

	VCC is connected to PIN #2 (5v Power)

	GND is connected to PIN #6 (Ground)

	DATA is connected to PIN #7 (BCM 4 - GPCLK0)

This picture shows the sensor wired to the Raspberry PI and this is a zoom into the wires used.

The Software

For this plugin we use the ADAFruit Python Library (links to the GitHub repository are above). First, you must install the library (in future versions the library will be provided in a ready-made package):

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
Cloning into 'Adafruit_Python_DHT'...
remote: Counting objects: 249, done.
remote: Total 249 (delta 0), reused 0 (delta 0), pack-reused 249
Receiving objects: 100% (249/249), 77.00 KiB | 0 bytes/s, done.
Resolving deltas: 100% (142/142), done.
$ cd Adafruit_Python_DHT
$ sudo apt-get install build-essential python-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
build-essential python-dev
...
$ sudo python3 setup.py install
running install
running bdist_egg
running egg_info
creating Adafruit_DHT.egg-info
...
$

The Plugin

This is the code for the plugin:

-*- coding: utf-8 -*-

FOGLAMP_BEGIN
See: http://foglamp.readthedocs.io/
FOGLAMP_END

""" Plugin for a DHT11 temperature and humidity sensor attached directly
 to the GPIO pins of a Raspberry Pi

 This plugin uses the Adafruit DHT library, to install this perform
 the following steps:

 git clone https://github.com/adafruit/Adafruit_Python_DHT.git
 cd Adafruit_Python_DHT
 sudo apt-get install build-essential python-dev
 sudo python setup.py install

 To access the GPIO pins foglamp must be able to access /dev/gpiomem,
 the default access for this is owner and group read/write. Either
 FogLAMP must be added to the group or the permissions altered to
 allow FogLAMP access to the device.
 """

from datetime import datetime, timezone
import uuid

from foglamp.common import logger
from foglamp.services.south import exceptions

__author__ = "Mark Riddoch"
__copyright__ = "Copyright (c) 2017 OSIsoft, LLC"
__license__ = "Apache 2.0"
__version__ = "${VERSION}"

_DEFAULT_CONFIG = {
 'plugin': {
 'description': 'Python module name of the plugin to load',
 'type': 'string',
 'default': 'dht11'
 },
 'pollInterval': {
 'description': 'The interval between poll calls to the device poll routine expressed in milliseconds.',
 'type': 'integer',
 'default': '1000'
 },
 'gpiopin': {
 'description': 'The GPIO pin into which the DHT11 data pin is connected',
 'type': 'integer',
 'default': '4'
 }

}

_LOGGER = logger.setup(__name__)
""" Setup the access to the logging system of FogLAMP """

def plugin_info():
 """ Returns information about the plugin.

 Args:
 Returns:
 dict: plugin information
 Raises:
 """

 return {
 'name': 'DHT11 GPIO',
 'version': '1.0',
 'mode': 'poll',
 'type': 'south',
 'interface': '1.0',
 'config': _DEFAULT_CONFIG
 }

def plugin_init(config):
 """ Initialise the plugin.

 Args:
 config: JSON configuration document for the device configuration category
 Returns:
 handle: JSON object to be used in future calls to the plugin
 Raises:
 """

 handle = config['gpiopin']['value']
 return handle

def plugin_poll(handle):
 """ Extracts data from the sensor and returns it in a JSON document as a Python dict.

 Available for poll mode only.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 returns a sensor reading in a JSON document, as a Python dict, if it is available
 None - If no reading is available
 Raises:
 DataRetrievalError
 """

 try:
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, handle)
 if humidity is not None and temperature is not None:
 time_stamp = str(datetime.now(tz=timezone.utc))
 readings = {'temperature': temperature, 'humidity': humidity}
 wrapper = {
 'asset': 'dht11',
 'timestamp': time_stamp,
 'key': str(uuid.uuid4()),
 'readings': readings
 }
 return wrapper
 else:
 return None

 except Exception as ex:
 raise exceptions.DataRetrievalError(ex)

 return None

def plugin_reconfigure(handle, new_config):
 """ Reconfigures the plugin, it should be called when the configuration of the plugin is changed during the
 operation of the device service.
 The new configuration category should be passed.

 Args:
 handle: handle returned by the plugin initialisation call
 new_config: JSON object representing the new configuration category for the category
 Returns:
 new_handle: new handle to be used in the future calls
 Raises:
 """

 new_handle = new_config['gpiopin']['value']
 return new_handle

def plugin_shutdown(handle):
 """ Shutdowns the plugin doing required cleanup, to be called prior to the device service being shut down.

 Args:
 handle: handle returned by the plugin initialisation call
 Returns:
 Raises:
 """
 pass

Building FogLAMP and Adding the Plugin

If you have not built FogLAMP yet, follow the steps described here. After the build, you can optionally install FogLAMP following these steps.

	If you have started FogLAMP from the build directory, copy the structure of the foglamp-south-dht11/python/ directory into the python directory:

$ cd ~/FogLAMP
$ cp -R ~/foglamp-south-dht11/python/foglamp/plugins/south/dht11 python/foglamp/plugins/south/
$

	If you have installed FogLAMP by executing sudo make install, copy the structure of the foglamp-south-dht11/python/ directory into the installed python directory:

$ sudo cp -R ~/foglamp-south-dht11/python/foglamp/plugins/south/dht11 /usr/local/foglamp/python/foglamp/plugins/south/
$

Note

If you have installed FogLAMP using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/foglamp/service -d '{"name": "dht11", "type": "south", "plugin": "dht11", "enabled": true}'

Note

Each plugin repo has its own debian packaging script and documentation, And that is the recommended way to go! As above method(s) may need explicit action for linux and/or python dependencies installation.

Using the Plugin

Once south plugin is added as an enabled service, You are ready to use the DHT11 plugin.

$ curl -X GET http://localhost:8081/foglamp/service | jq

Let’s see what we have collected so far:

$ curl -s http://localhost:8081/foglamp/asset | jq
[
 {
 "count": 158,
 "asset_code": "dht11"
 }
]
$

Finally, let’s extract some values:

$ curl -s http://localhost:8081/foglamp/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:41:39.672",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:35.615",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:34.087",
 "reading": {
 "temperature": 19,
 "humidity": 62
 }
 },
 {
 "timestamp": "2017-12-30 14:41:32.557",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 },
 {
 "timestamp": "2017-12-30 14:41:31.028",
 "reading": {
 "temperature": 19,
 "humidity": 63
 }
 }
]
$

Clearly we will not see many changes in temperature or humidity, unless we place our thumb on the sensor or we blow warm breathe on it :-)

$ curl -s http://localhost:8081/foglamp/asset/dht11?limit=5 | jq
[
 {
 "timestamp": "2017-12-30 14:43:16.787",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:15.258",
 "reading": {
 "temperature": 25,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:13.729",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:12.201",
 "reading": {
 "temperature": 24,
 "humidity": 95
 }
 },
 {
 "timestamp": "2017-12-30 14:43:05.616",
 "reading": {
 "temperature": 22,
 "humidity": 95
 }
 }
]
$

Needless to say, the North plugin will send the buffered data to the PI system using the OMF plugin or any other north system using the appropriate north plugin.

[image: DHT11 in PI] [https://s3.amazonaws.com/foglamp/readthedocs/images/06_dht11_tags_in_PI.jpg]

 Set Point Control

Set Point Control

South plugins can also be used to exert control on the underlying device to which they are connected. This is not intended for use as a substitute for real time control systems, but rather as a mechanism to make non-time critical changes to a device or to trigger an operation on the device.

To make a south plugin support control features there are two steps that need to be taken

	Tag the plugin as supporting control

	Add the entry points for control

Enable Control

A plugin enables control features by means of the flags in the plugin information data structure which is returned by the plugin_info entry point of the plugin. The flag value SP_CONTROL should be added to the flags of the plugin.

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 SP_CONTROL, // Flags - add control
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 CONFIG // Default configuration
};

Adding this flag will cause the south service to do a number of things when it loads the plugin;

	The south service will attempt to resolve the two control entry points.

	A toggle will be added to the advanced configuration category of the service that will permit the disabling of control services.

	A security category will be added to the south service that contains the access control lists and permissions associated with the service.

Control Entry Points

Two entry points are supported for control operations in the south plugin

	plugin_write: which is used to set the value of a parameter within the plugin or device

	plugin_operation: which is used to perform an operation on the plugin or device

The south plugin can support one or both of these entry points as appropriate for the plugin.

Write Entry Point

The write entry point is used to set data in the plugin or write data into the device.

The plugin write entry point is defined as follows

bool plugin_write(PLUGIN_HANDLE *handle, string name, string value)

Where the parameters are;

	handle the handle of the plugin instance

	name the name of the item to be changed

	value a string presentation of the new value to assign top the item

The return value defines if the write was successful or not. True is returned for a successful write.

bool plugin_write(PLUGIN_HANDLE *handle, string& name, string& value)
{
Random *random = (Random *)handle;

 return random->write(operation, name, value);
}

In this case the main logic of the write operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

bool Random::write(string& name, string& value)
{
 if (name.compare("mode") == 0)
 {
 if (value.compare("relative") == 0)
 {
 m_mode = RELATIVE_MODE;
 }
 else if (value.compare("absolute") == 0)
 {
 m_mode = ABSOLUTE_MODE;
 }
 Logger::getLogger()->error("Unknown mode requested '%s' ignored.", value.c_str());
 return false;
 }
 else
 {
 Logger::getLogger()->error("Unknown control item '%s' ignored.", name.c_str());
 return false;
 }
 return true;
}

In this case the code is relatively simple as we assume there is a single control parameter that can be written, the mode of operation. We look for the known name and if a different name is passed an error is logged and false is returned. If the correct name is passed in we then check the value and take the appropriate action. If the value is not a recognized value then an error is logged and we again return false.

In this case we are merely setting a value within the plugin, this could equally well be done via configuration and would in that case be persisted between restarted. Normally control would not be used for this, but rather for making a change with the connected device itself, such as changing a PLC register value. This is simply an example to demonstrate the mechanism.

Operation Entry Point

The plugin will support an operation entry point. This will execute the given operation synchronously, it is expected that this operation entry point will be called using a separate thread, therefore the plugin should implement operations in a thread safe environment.

The plugin write operation entry point is defined as follows

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)

Where the parameters are;

	handle the handle of the plugin instance

	operation the name of the operation to be executed

	count the number of parameters

	params a set of name/value pairs that are passed to the operation

The operation parameter should be used by the plugin to determine which operation is to be performed, that operation may also be passed a number of parameters. The count of these parameters are passed to the plugin in the count argument and the actual parameters are passed in an array of key/value pairs as strings.

The return from the call is a boolean result of the operation, a failure of the operation or a call to an unrecognized operation should be indicated by returning a false value. If the operation succeeds a value of true should be returned.

The following example shows the implementation of the plugin operation entry point.

bool plugin_operation(PLUGIN_HANDLE *handle, string& operation, int count, PLUGIN_PARAMETER **params)
{
Random *random = (Random *)handle;

 return random->operation(operation, count, params);
}

In this case the main logic of the operation is implemented in a class that contains all the plugin logic. Note that the assumption here, and a design pattern often used by plugin writers, is that the PLUGIN_HANDLE is actually a pointer to a C++ class instance.

In this case the implementation in the plugin class is as follows:

/**
 * SetPoint operation. We support reseeding the random number generator
 */
bool Random::operation(const std::string& operation, int count, PLUGIN_PARAMETER **params)
{
 if (operation.compare("seed") == 0)
 {
 if (count)
 {
 if (params[0]->name.compare("seed"))
 {
 long seed = strtol(params[0]->value.c_str(), NULL, 10);
 srand(seed);
 }
 else
 {
 return false;
 }
 }
 else
 {
 srand(time(0));
 }
 Logger::getLogger()->info("Reseeded random number generator");
 return true;
 }
 Logger::getLogger()->error("Unrecognised operation %s", operation.c_str());
 return false;
}

In this example, the operation method checks the name of the operation to perform, only a single operation is supported by this plugin. If this operation name differs the method will log an error and return false. If the operation is recognized it will check for any arguments passed in, retrieve and use it. In this case an optional seed argument may be passed.

There is no actual machine connected here, therefore the operation occurs within the plugin. In the case of a real machine the operation would most likely cause an action on a machine, for example a request to the machine to re-calibrate itself.

 A South Plugin Example In C/C++: the DHT11 Sensor

A South Plugin Example In C/C++: the DHT11 Sensor

Using the same example as before, the DHT11 temperature and humidity sensor, let’s look at how to create the plugin in C/C++.

The Software

For this plugin we use the wiringpi C library to connect to the hardware of the Raspberry Pi

$ sudo apt-get install wiringpi
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
wiringpi
...
$

The Plugin

This is the code for the plugin.cpp file that provides the plugin API:

/*
 * FogLAMP south plugin.
 *
 * Copyright (c) 2018 OSisoft, LLC
 *
 * Released under the Apache 2.0 Licence
 *
 * Author: Amandeep Singh Arora
 */
#include <dht11.h>
#include <plugin_api.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string>
#include <logger.h>
#include <plugin_exception.h>
#include <config_category.h>
#include <rapidjson/document.h>
#include <version.h>

using namespace std;
#define PLUGIN_NAME "dht11_V2"

/**
 * Default configuration
 */
const static char *default_config = QUOTE({
 "plugin" : {
 "description" : "DHT11 C south plugin",
 "type" : "string",
 "default" : PLUGIN_NAME,
 "readonly": "true"
 },
 "asset" : {
 "description" : "Asset name",
 "type" : "string",
 "default" : "dht11",
 "order": "1",
 "displayName": "Asset Name",
 "mandatory" : "true"
 },
 "pin" : {
 "description" : "Rpi pin to which DHT11 is attached",
 "type" : "integer",
 "default" : "7",
 "displayName": "Rpi Pin"
 }
 });

/**
 * The DHT11 plugin interface
 */
extern "C" {

/**
 * The plugin information structure
 */
static PLUGIN_INFORMATION info = {
 PLUGIN_NAME, // Name
 VERSION, // Version
 0, // Flags
 PLUGIN_TYPE_SOUTH, // Type
 "1.0.0", // Interface version
 default_config // Default configuration
};

/**
 * Return the information about this plugin
 */
PLUGIN_INFORMATION *plugin_info()
{
 return &info;
}

/**
 * Initialise the plugin, called to get the plugin handle
 */
PLUGIN_HANDLE plugin_init(ConfigCategory *config)
{
 unsigned int pin;

 if (config->itemExists("pin"))
 {
 pin = stoul(config->getValue("pin"), nullptr, 0);
 }

 DHT11 *dht11= new DHT11(pin);

 if (config->itemExists("asset"))
 dht11->setAssetName(config->getValue("asset"));
 else
 dht11->setAssetName("dht11");

 Logger::getLogger()->info("m_assetName set to %s", dht11->getAssetName());

 return (PLUGIN_HANDLE)dht11;
}

/**
 * Poll for a plugin reading
 */
Reading plugin_poll(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 return dht11->takeReading();
}

/**
 * Reconfigure the plugin
 */
void plugin_reconfigure(PLUGIN_HANDLE *handle, string& newConfig)
{
ConfigCategory conf("dht", newConfig);
DHT11 *dht11 = (DHT11*)*handle;

 if (conf.itemExists("asset"))
 dht11->setAssetName(conf.getValue("asset"));
 if (conf.itemExists("pin"))
 {
 unsigned int pin = stoul(conf.getValue("pin"), nullptr, 0);
 dht11->setPin(pin);
 }
}

/**
 * Shutdown the plugin
 */
void plugin_shutdown(PLUGIN_HANDLE *handle)
{
 DHT11 *dht11 = (DHT11*)handle;
 delete dht11;
}
};

The full source code, including the DHT11 class can be found in GitHub https://github.com/foglamp/foglamp-south-dht

Building FogLAMP and Adding the Plugin

If you have not built FogLAMP yet, follow the steps described here. After the build, you can optionally install FogLAMP following these steps.

	Clone the foglamp-south-dht repository

$ git clone https://github.com/foglamp/foglamp-south-dht.git
...
$

	Set the environment variable FOGLAMP_ROOT to the directory in which you built FogLAMP

$ export FOGLAMP_ROOT=~/foglamp
$

	Go to the location in which you cloned the foglamp-south-dht repository and create a build directory and run cmake in that directory

$ cd ~/foglamp-south-dht
$ mkdir build
$ cd build
$ cmake ..
...
$

	Now make the plugin

$ make
$

	If you have started FogLAMP from the build directory, copy the plugin into the destination directory

$ mkdir -p $FOGLAMP_ROOT/plugins/south/dht
$ cp libdht.so $FOGLAMP_ROOT/plugins/south/dht
$

	If you have installed FogLAMP by executing sudo make install, copy the plugin into the destination directory

$ sudo mkdir -p /usr/local/foglamp/plugins/south/dht
$ sudo cp libdht.so /usr/local/foglamp/plugins/south/dht
$

Note

If you have installed FogLAMP using an alternative DESTDIR, remember to add the path to the destination directory to the cp command.

	Add service

$ curl -sX POST http://localhost:8081/foglamp/service -d '{"name": "dht", "type": "south", "plugin": "dht", "enabled": true}'

You may now use the C/C++ plugin in exactly the same way as you used a Python plugin earlier.

_images/edgeml.jpg
o— 0

Plugin Name Review Configuration
Name of entries asset edgeml
Name of inferences output asset edgeMinference
Kubernetes deployment
REST URL for ML model
Forward inputs
Remove files after inference o
Enable/disable plugin

Previous one

_images/ema_1.jpg
Sine South Service

— 0

Plugin Name Review Configuration

EMA datapoint ema
Rate 007

Enabled 0

_images/dt9837_4.jpg
Coupling Ch. 0 DC v
AC

Coupling Ch. 1 VADC

Coupling Ch. 2 DC v

_images/edge_control_path.jpg
Storage Notification
g Service

_images/email_1.jpg
Notification Instance

To address
To

Subject

From address
From name
SMTP Server
SMTP Port
SSL/TLS
Username
Password

Enabled

Rule Delivery Channel

alert subscriber@dianomic.com
Notification alert subscriber
Fledge alert notfication
dianomic alerts@gmal.com

Notification alert

Done

smtp.gmail com

587

dianomic.alerts@gmail.com

pass

Previous

_images/empty_notifications.jpg
+:». FogLAMP ® aj/FogLAMP Received: 13,197 Sent: 0 Uptime: 00:00:28 (OS]

Dashboard

Assets & Readings Notifications & Create Notification Instance + €%

South

North
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings .
© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/dt9837_2.jpg
Scan Rate 8kHz

Differential
Input Mode v Single Ended :]
Pseudo Differential

Range BiPolar 60 Volts v

_images/dt9837_3.jpg
Range

First Channel
Last Channel
Sensitivity
IEPE Ch. O
IEPE Ch. 1
IEPE Ch. 2
IEPE Ch. 3
Coupling Ch. 0
Coupling Ch. 1
Coupling Ch. 2

Coupling Ch. 3

Previous

BiPolar 30 Volts
BiPolar 20 Volts
BiPolar 15 Volts
BiPolar 10 Volts
BiPolar 5 Volts
BiPolar 4 Volts
BiPolar 3 Volts
BiPolar 2.5V Volts
BiPolar 2 Volts
BiPolar 1.25 Volts
BiPolar 1 Volt
BiPolar 625 mVolts
BiPolar 500 mVolts
BiPolar 250 mVolts
BiPolar 312 mVolts
BiPolar 200 mVolts
BiPolar 156 mVolt
BiPolar 125 mVolts
BiPolar 100 mVolts
BiPolar 78 mVolts
BiPolar 50 mVolts
BiPolar 10 mVolts
BiPolar 5 mVolts
60 Volts

30 Volts

20 Volts

15 Volts

10 Volts

5 Volts

4 Volts

2.5 Volts

2 Volts

1.25 Volts

1 Volt

625 mVolts

500 mVolts

250 mVolts

200 mVolts

19R m\/nlte
v

_images/dt9837A.jpg

_images/dt9837_1.jpg
o———®

Plugin & Service Name

Asset Name
Scan Rate
Input Mode
Range

First Channel
Last Channel
Sensitivity
IEPE Ch. 0
IEPE Ch. 1
IEPE Ch. 2
IEPE Ch. 3
Coupling Ch. 0
Coupling Ch. 1
Coupling Ch. 2

Coupling Ch. 3

Previous

Review Configuration Done
analogue
8kHz
Single Ended v

BiPolar 60 Volts v

O O

DC v
DC v
DC v

DC v

_images/certificate_store.jpg
+:«. FogLAMP ® aj/FogLAMP Received: 8,031 Sent: 0

Dashboard

Assets & Readings

South
Ke
North y
o admin
Notifications
Configuration ca
Schedules foglamp

Certificate Store user

Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

User Management
Support

Settings

Certificate Store &

Extension
key
key
key

key

delete

delete

delete

Uptime: 00:14:02

Certificate Extension

admin cert
ca cert
foglamp cert
user cert

© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

delete

delete

delete

admin v

Import &

_images/certs.jpg
Certificate Store &

Key
admin
ca

fledge

user

Extension
key
key
key

key

delete

delete

delete

Certificate
admin

ca

fledge
user

Extension

cert

cert

cert

cert

BE

Import &,

_images/cc2650.jpg

_images/cc2650_1.jpg
o—— 0O

Plugin & Service Name

Bluetooth Address

Asset Name Prefix
Shutdown Threshold
Connection Timeout
Temperature Sensor
Temperature Sensor Name
Luminance Sensor
Luminance Sensor Name
Humidity Sensor

Humidity Sensor Name
Pressure Sensor

Pressure Sensor Name
Movement Sensor
Gyroscope Sensor Name
Accelerometer Sensor Name
Magnetometer Sensor Name
Battery Data

Battery Sensor Name

Previous

Review Configuration

B0:9122EA79:04

cc26s01n

temperature

humidity

pressure

gyroscope

accelerometer

magnetometer

battery

Done

_images/chat_1.jpg
®0®@® © chat x +

&« C & chat.google.com B w O 0 :

@ Chat ® Active v @ B

Find people, rooms, bots @

PEOPLE

Find someone to chat with using the
filter box above.

ROOMS
Rooms are where the team magic

happens. Find or create a room
using the filter box above.

BOTS +

Bots can automate tasks or send
timely updates.

_images/chat_2.jpg
Fledge Notifications 1member ~

o)
=1

o
Q+

7
@

b

View members
Add people & bots
Rename

Configure webhooks

Star

Turn off notifications
@mentions will still notify

Leave
You can always return

i P

_images/change.jpg
 r—@Q)

Plugin Name Review Configuration
Asset fam

Trigger curtent

Required Change % 5

Pre-trigger time (mS) 500

Post-trigger time (mS) 500

Reduced collection rate 2

Rate Units perhour v

Enabled

Previous

_images/change_role.jpg
Update User Role

Username

user

Role

user

_images/chat_3.jpg
Incoming webhooks

View Documentation

Fledge Tank Monitor]

Avatar URL

Optional; min size 128 x 128px

_images/chat_4.jpg
Notification Instance

Google Hangout Webhook URL
Message Text

Enabled

Previous

(3] (]

Rule Delivery Channel Done

https://chat.googleapis.com/v1/spaces/AAAALGAVVRI/messages?key=AlzaSyDdIONCZtEGvySiMm-WEIRq3CPzaKqasHI&token=ZlI2c

Tank 4 s nearly full

_images/config1.jpg
Input assets name

Forward data o

Destination directory FOGLAMP DATA/readings-out
Subdirectory name southstorage

File type o v

Sampling rate 2000

Cron mode continuous

Cron period starting time

Recording period duration 100ms
Event repetition time T6mins
Pre event time min

Event duration min

_images/config11.jpg
o—0@

Plugin & Service Name

Source of Data Generation
Directory Name

Camera ID

RTSP URL

Frames Per Minute
Inference Choice
Deployment Name

The URL to post the images.

Review Configuration

steam v

Dir

vy For Using Images

rtspi/flocalhost:8554/clip

1000

8w

miedge-deployment

p:/localhost:30163/v1 vision) detection

Done

_images/chat_6.jpg
Incoming webhooks
View Documentation

& Fledge Tank Monitor [}

https://chat googleapis.com/v1/spaces/AAAALGAVVRI/messages?key=AlzaSyDd

_images/coap_1.jpg
0—— 0O

Plugin & Service Name Review Configuration

Port 5683

URI sensor-values

Previous

Done

_images/config_1.jpg
OO0 (4]

Notification Instance Rule Delivery Channel Done
Category Sineadvanced

Item readingsPersecond

Trigger Value 20

Cleared Value 1

Enabled

Previous

_images/config_1.png
rtrr South Service

TFlite Model File
Labels File
Asset Name

Enable Edge TPU

um Confidence Threshold
Source For Detection Camera/Stream
Stream URL

Opencv Backend

Stream Protocol

Camera ID

Enable Detection Window

detecttfite

coco_labels txt

person._detection_4

0s

stream v

5p/192.168.0.109.8554/clip

_images/config2.jpg
Post event time
Rotate after
Periodic collection spec

Add timestamp to csv data
Enable compression

Compression type
Encryption password

Enabled

1min

14days

bap2

_images/config21.jpg
Steam Results

Stream Port
Output Asset
Destination Directory
Rotate after

Rotation Data Amount

Previous

8085

Detection Results.

detection

120

10

_images/config_11.jpg
Notification Instance Rule

Delivery Channel

Done

Category

Item
JSON Path
Property
Trigger Value
Cleared Value

Enabled O

Previous

_images/chat_5.jpg
@ Chat ® Active ¥

Find people, rooms, bots Q

PEOPLE

Find someone to chat with using the
filter box above.

ROOMS

Fledge Notifications

BOTS +

Bots can automate tasks or send
timely updates.

Fledge Notifications 1member ~
4

Fledge Notifications

You created this room today

&+ Add people & bots

¥ Unread

TODAY

;\b Fledge Tank Monitor Bot Now e
@ Tanks

ALERT for ruleTank 4
Notification has triggered

Tank 4 is nearly full

0~

+ New thread in Fledge Notifications

a & @ # @

Follow

_images/csv_config2.jpg
Ro

dex for column names
Ingest mode
Sample rate

Burst interval (ms)

iestamp processing mode

imestamp column name
Timestamp format
Ignore or report for NaN
Post process method

Suffix name

Previous

burst v

8000

1000

current time v

Y5 THAM%S %%z

ignore v

continue_playing v

tmp

_images/datablock.jpg
Projectl » PLC_1[CPU 1212CDUDGRIy] » Program blocks » Data_block 1 [DB1]

SF S B B B %7 Keepacusiuslues G Snspshor % 5, Copysmapshors tostsrtvslues . @ Losd startvslues ss scslvalues By,), T
Data_block_1
Name Dats ype Offiet smalue |Rewin | Accessblef.. Wrta.. Visblein.. Setpoint Comment

I

2 @ comt “ine 00 o a =]] 2]

3 @s swee int 20 1 a =]] =]

4 @ filures Dword 40 3 a =] (] =]

5 l@e et Real 80 13 (o] =]] =]

6 @= running Bool 120 e (=] =] (] =]

7 @s downime Time 140 wssesews O =] 2 @ B8

_images/csv_1.jpg
o—0

Plugin & Service Name Review Configuration
Asset Name Vibration
Datapoint ch
Multi-Column 5]
Path Of File

Previous

Done

_images/csv_config1.jpg
o—— 0@

Plugin & Service Name Review Configuration
Asset name vibration
CSV directory name FLEDGE DATA

CSV file pattern
Header processing method do_not_skip v
Data point for header rows metadata

Number of rows to skip or pass in 1

datapoint
Dynamic columns o

Column processing method pick_from_file v
Auto generate prefix column

Column names and data types for explicit

Done

_images/dht11.jpg

_images/dht111.jpg

_images/delete_user.jpg
Delete User

Are you sure, you want to delete the user mark?

_images/delta.jpg
Plugin Name

Tolerance %

Minimum Rate

Minimum Rate Units

Individual Tolerances

Enabled

o— 0

Previous

persecond v

1{}

Review Configuration

_images/config_2.png
rtrr South Service

Stream Protocol wp v
Camera ID 0 N
Enable Detection Window
Enable Web Streaming @
Web Streaming Port 8085

‘Show Advanced Config
Enabled

Applications ©

= -

@ ExportReadings Delete Service

_images/connection_https.jpg
Connection Setup

Host Port

https v foglamp-18.local 1995

_images/digiducer_3.jpg
Channel

both

_images/dnp3.jpg
o——0O

Plugin & Service Name Review Configuration
Asset Name prefix dnp3_
Master link Id 1
Outstation address 127.0.01
Outstation port 20000
Outstation link Id 10
Data scan [
Scan interval 30
Network timeout 5

Previous

Done

_images/digiducer_1.jpg
L

Plugin & Service Name

Asset Name
Sample Rate

Block size
Continuous Sampling
Sample Period
Sample Interval

Channel

Previous

vibration

8000Hz

256

30

20gpk v

Review Configuration

M

Done

_images/digiducer_2.jpg
Sample Rate
Block size
Continuous Sampling

Samble Period

11025Hz
16000Hz
22050Hz
32000Hz
44100Hz
48000Hz
-

_images/downsample_2.jpg
Down Sample Algorithm
Vean
Vedian
Vode
Vinimum
Maimum

Excluded Assets

_images/download_icon.jpg

_images/downsample_1.jpg
Sine South Service

o——— 0O

Plugin Name Review Configuration
Down Sample Factor 2
Down Sample Algorithm Sample
Excluded Assets Cin
2 "exclusions": []
3}

Enabled 0

Previous

_images/dht11_11.jpg
L

Plugin & Service Name Review Configuration
Asset Name dht11
Rpi Pin 7

Previous

Done

_images/digiducer.jpg
o 9

_images/dht11_1.jpg
I

Plugin & Service Name Review Configuration
Asset Name dht11
GPIO Pin a

Previous

Done

nav.xhtml

 Table of Contents

 		
 Welcome to FogLAMP’s documentation!

 		
 Quick Start Guide

 		
 Introduction to FogLAMP

 		
 Installing FogLAMP

 		
 Using the package repository to install FogLAMP

 		
 Installing FogLAMP downloaded packages

 		
 Checking package installation

 		
 Run with PostgreSQL

 		
 Starting and stopping FogLAMP

 		
 Troubleshooting FogLAMP

 		
 Running the FogLAMP GUI

 		
 FogLAMP Dashboard

 		
 Managing Data Sources

 		
 Adding Data Sources

 		
 Configuring Data Sources

 		
 Enabling and Disabling Data Sources

 		
 Viewing Data

 		
 Display Graph

 		
 Download Data

 		
 Sending Data to Other Systems

 		
 Adding Data Destinations

 		
 Configuring Data Destinations

 		
 Enabling and Disabling Data Destinations

 		
 Using the OMF plugin

 		
 PI Web API OMF Endpoint

 		
 EDS OMF Endpoint

 		
 OCS OMF Endpoint

 		
 PI Connector Relay

 		
 Naming Scheme

 		
 Asset Framework Hierarchy Rules

 		
 OMF Hints

 		
 Number Format Hints

 		
 Integer Format Hints

 		
 Type Name Hints

 		
 Type Hint

 		
 Tag Name Hint

 		
 Datapoint Specific Hint

 		
 Asset Framework Location Hint

 		
 Adding OMF Hints

 		
 Backing up and Restoring FogLAMP

 		
 Troubleshooting and Support Information

 		
 Package Uninstallation

 		
 Debian Platform

 		
 RPM Platform

 		
 Processing Data

 		
 Why Use Filters?

 		
 What Can Be Done?

 		
 Where Can it Be Done?

 		
 Adding a South Filter

 		
 Adding Filters To The North

 		
 Some Useful Filters

 		
 Scale

 		
 Metadata

 		
 Delta

 		
 Rate

 		
 FogLAMP Architecture

 		
 FogLAMP Core

 		
 Storage Layer

 		
 Southbound Microservices

 		
 Northbound Microservices

 		
 Filters

 		
 Event Engine

 		
 REST API

 		
 Graphical User Interface

 		
 FogLAMP Plugins

 		
 South Plugins

 		
 North Plugins

 		
 Filter Plugins

 		
 Notification Rule Plugins

 		
 Notification Delivery Plugins

 		
 Securing FogLAMP

 		
 Enabling HTTPS Encryption

 		
 Requiring User Login

 		
 Changing Your Password

 		
 Password Rotation Mechanism

 		
 User Management

 		
 Adding Users

 		
 Changing User Roles

 		
 Reset User Password

 		
 Delete A User

 		
 Certificate Store

 		
 Buffering & Storage

 		
 Configuring The Storage Plugin

 		
 SQLite Plugin Configuration

 		
 Installing A PostgreSQL server

 		
 Ubuntu Install

 		
 CentOS/Red Hat Install

 		
 SQLite Plugin Configuration

 		
 Tuning FogLAMP

 		
 South Service Advanced Configuration

 		
 Tuning Buffer Usage

 		
 Notifications Service

 		
 Notifications

 		
 Notification Rules

 		
 Notification Types

 		
 Notification Delivery

 		
 Installing the Notification Service

 		
 Building Notification Service

 		
 Installing Notification Service Package

 		
 Starting The Notification Service

 		
 Configuring The Notification Service

 		
 Using The Notification Service

 		
 Add A Notification

 		
 Editing Notifications

 		
 Set Point Control

 		
 Control Functions

 		
 Set Point

 		
 Operation

 		
 Control Paths

 		
 Edge Based Control

 		
 Troubleshooting the PI-Server integration

 		
 Log files

 		
 How to check the PI Web API is installed and running

 		
 Commands to check the PI WEB API

 		
 Error messages and causes

 		
 Possible solutions to common problems

 		
 Plugin Developer Guide

 		
 Plugins

 		
 Plugins in this version of FogLAMP

 		
 Installing New Plugins

 		
 Writing and Using Plugins

 		
 Common FogLAMP Plugin API

 		
 South Plugins

 		
 Polled Mode

 		
 Async IO Mode

 		
 A South Plugin Example In Python: the DHT11 Sensor

 		
 South Plugins in C

 		
 Polled Mode

 		
 Async IO Mode

 		
 Set Point Control

 		
 A South Plugin Example In C/C++: the DHT11 Sensor

 		
 C++ Support Classes

 		
 Reading

 		
 Configuration Category

 		
 Logger

 		
 Hybrid Plugins

 		
 North Plugins

 		
 The OMF Plugin

 		
 Storage Plugins

 		
 Data and Metadata

 		
 Common Elements for Storage Plugins

 		
 Filter Plugins

 		
 Configuration

 		
 C++ Filter Plugin API

 		
 C++ Filter Example

 		
 Python Filter API

 		
 Python Filter Example

 		
 Notification Delivery Plugins

 		
 Configuration

 		
 Notification Delivery Plugin API

 		
 Testing Your Plugin

 		
 Initial Testing

 		
 C/C++ Common Faults

 		
 Running Under a Debugger

 		
 Using strace

 		
 Memory Leaks and Corruptions

 		
 Python Plugin Info

 		
 REST API Developers Guide

 		
 The FogLAMP REST API

 		
 Introducing the FogLAMP REST API

 		
 Administration API Reference

 		
 Audit Trail

 		
 Configuration Management

 		
 Task Management

 		
 Other Administrative API calls

 		
 User API Reference

 		
 Browsing Assets

 		
 Version History

 		
 FogLAMP v1

 		
 v1.9.2

 		
 v1.9.1

 		
 v1.9.0

 		
 v1.8.2

 		
 v1.8.1

 		
 v1.8.0

 		
 v1.7.0

 		
 v1.6.0

 		
 v1.5.2

 		
 v1.5.1

 		
 v1.5.0

 		
 v1.4.1

 		
 v1.4.0

 		
 v1.3.1

 		
 v1.3

 		
 v1.2

 		
 v1.1.1

 		
 v1.1

 		
 v1.0

 		
 Downloads

 		
 Packages

 		
 Download/Clone from GitHub

 		
 Kerberos authentication

 		
 Introduction

 		
 PI-Server as the North endpoint

 		
 North plugin

 		
 FogLAMP server configuration

 		
 IP Address resolution of the KDC

 		
 Kerberos client configuration

 		
 Kerberos keytab file

 		
 Troubleshooting the Kerberos authentication

 		
 Kerberos authentication on RedHat/CentOS

 		
 Plugin Documentation

 		
 FogLAMP South Plugins

 		
 ABB Ability Smart Cloud Service

 		
 AM2315 Temperature & Humidity Sensor

 		
 Beckhoff TwinCAT

 		
 CC2650 SensorTag

 		
 CoAP

 		
 Simple CSV Plugin

 		
 CSV Playback

 		
 DHT11 (C version)

 		
 DHT11 (Python version)

 		
 Digiducer Vibration Sensor

 		
 DNP3 Master Plugin

 		
 Data Translation DT9837 Series

 		
 Edge ML Plugin

 		
 Enviro pHAT Plugin

 		
 Expression South Plugin

 		
 Flir AX8 Thermal Imaging Camera

 		
 FLIR GW65 Vibration Sensors

 		
 South HTTP

 		
 INA219 Voltage & Current Sensor

 		
 Lathe Simulation

 		
 Modbus South Plugin

 		
 South MQTT

 		
 MQTT Sparkplug B

 		
 MQTT South with Payload Scripting

 		
 Object Policy

 		
 OPC/UA South Plugin

 		
 Person Detection Plugin

 		
 PI Web API south Plugin

 		
 Playback Plugin

 		
 PT100 Temperature Sensor

 		
 Random

 		
 Random Walk

 		
 OPC/UA Safe & Secure South Plugin

 		
 Siemens S7 PLC

 		
 SenseHAT

 		
 Simple REST with Payload Scripting

 		
 Sinusoid

 		
 System Information

 		
 Advantech USB-4704

 		
 South Webcam Media Plugin

 		
 FogLAMP North Plugins

 		
 OMF

 		
 Google Cloud Platform North Plugin

 		
 Graphite

 		
 North HTTP

 		
 North HTTP-C

 		
 InfluxDB Time Series Database

 		
 InfluxDB Cloud

 		
 Kafka Producer

 		
 OPCUA Server

 		
 Splunk Data Collector

 		
 ThingSpeak

 		
 FogLAMP Filter Plugins

 		
 Asset Filter

 		
 Change Filter

 		
 CSV Writer

 		
 Delta Filter

 		
 Down Sample Filter

 		
 Edge ML Filter Plugin

 		
 Exponential Moving Average

 		
 Event Rate Filter

 		
 Expression Filter

 		
 Fast Fourier Transform Filter

 		
 Flir Validity Filter

 		
 Log Filter

 		
 Metadata Filter

 		
 OMF Hint Filter

 		
 Python 2.7 Filter

 		
 Python 3.5 Filter

 		
 Rate Filter

 		
 Rename Filter

 		
 Replace Filter

 		
 Root Mean Squared (RMS) Filter

 		
 Scale Filter

 		
 Scale Set Filter

 		
 Sigma Data Cleansing Filter

 		
 Simple Python Filter

 		
 Statistics Filter

 		
 Threshold Filter

 		
 Vibration Features Filter

 		
 FogLAMP Notification Rule Plugins

 		
 Threshold Rule

 		
 Moving Average Rule

 		
 Expression Rule

 		
 Simple-Sigma Rule

 		
 FogLAMP Notification Delivery Plugins

 		
 Amazon Alexa Notification

 		
 Asset Notification

 		
 Configuration Update

 		
 Email Notifications

 		
 Google Chat

 		
 IFTTT Delivery Plugin

 		
 Jira Ticket Creation

 		
 JSON Configuration Update

 		
 Management Poll Notification

 		
 MQTT Notification

 		
 Conditional Forwarding

 		
 Operation Notification

 		
 Python 3 Script

 		
 Set Point Control Notification

 		
 Slack Messages

 		
 Telegram Messages

 		
 Zendesk Ticket Creation

_images/opcua_11.jpg
o——0© (]

Plugin & Service Name Review Configuration Done
Asset Name opcua
OPCUA Server URL ope.teps/imark local:53530/0PCUA/SimulationServer
OPCUA Obiject Subscriptions 1v ¢
2+ “subscriptions: [
3 "ns=5;s=85/0:Simulation"
4 1
5 3
Subscribe By ID
Min Reporting Interval 100

Previous

_images/opcua_2.jpg
Server Name
URL

URI
Namespace
Source
Object Root

Hierarchy

0—0O

Plugin & Name

Back

Review Configuration

Fledge OPCUA
opc.tep:/flocalhost:4840/fledge/server
urn://fledge.dianomic.com
httpffledge dianomic.com

readings v

Done

_images/opcua_12.jpg
0—— 0O o

Plugin & Service Name Review Configuration Done
Asset Name szopcun
OPCUA Server URL apc cpilocalhost53530/0PCUASImulationserver
OPCUA Object Subscriptions i [t
2v | subscriptions”: [

5=3;1=1001"

6

Min Reporting Interval (mill 1000

Security mode Nene v
Security policy Non v
User authentication policy [——
Username.

Password @
CA certificate authority cacert

Server public key OpcUAServer
Client public key clenteert

Client private key clenthey
Certificate revocation list caenl

Previous

_images/opcua_3.jpg
S .

OPCUA Server
Server Name Fledge OPCUA
URL ope.tep://localhost:4840/fledge/server
URI urn://fledge.dianomic.com
Namespace http://fledge.dianomic.com
Source readings v
Hide Advanced Config
Duration 60
Readings Block Size 500
Sleep Interval 1
Enabled (2
Exclusive %
Interval 0 01:00:00
Applications @

_images/opcua_21.jpg
Security mode Noe
s
Security policy SignAndencrypt

User authentication policy [—

_images/opcua_4.jpg
User authentication policy snonymass
Username

_images/opcua_31.jpg
Security policy Noe
Basic2se
User authentication policy Basicasesnass

_images/password_rotation.jpg
=+, FogLAMP ® aj/FogLAMP Received: 8,975 Sent: 0 Uptime: 00:17:12 admin v

Dashboard
Assets & Readings General v FogLAMP Admin and User REST APl &
South » Installation
North » Admin API Enable HTTP 2
Notifications > FogLAMP Service HTTP Port 8081
Coniigiraiion HTTPS Port 1995
Sehediles Certificate Name foglamp
Certificate Store .
Authentication mandatory %
Backup & Restore
Authentication method any v
Logs
Auth Certificate ca
Audit
Allow Ping 2
Notifications
Password Expiry Days 30| 8
Packages
System Auth Providers 1v {
2v "providers": [
Tasks 3 "username",
4 "ldap"
User Management 5]
6 }

Support

Settings

N

_images/password.jpg
Reset Password

_images/playback_01.jpg
o— 0

Plugin & Service Name

Asset Name

CSV file name with extension

Header Row

Header columns.

Cherry pick column with same/new name

Historic timestamps
Pick timestamp delta from file
Timestamp column name
Timestamp format

Ingest mode

Sample Rate

Burst Interval (ms)

Burst size

Read file in a loop.

Previous

Review Configuration

sample

e KM 1

100

1000

Done

_images/omf-plugin-connector-relay1.jpg
Endpoint Connector Relay

Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework il O
hierarchies rules

Pl Web API Authentication anonymous ¥
Method
Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/omf-plugin-connector-relay.jpg
Endpoint Connector Relay

Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework il O
hierarchies rules

Pl Web API Authentication anonymous ¥
Method
Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/omf-plugin-eds1.jpg
Endpoint Edge Data Store

Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry q

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression €

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework 1 {
hierarchies rules

Pl Web API Authentication anonymous ¥
Method
Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/omf-plugin-eds.jpg
Endpoint Edge Data Store

Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry q

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression €

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework 1 {
hierarchies rules

Pl Web API Authentication anonymous ¥
Method
Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/omf-plugin-ocs1.jpg
omf

Endpoint OSlsoft Cloud Services ¥

Server hostname pi-server

Server port, O=use the 0

default

Producer Token uid=5ced49c3-3a55-40e7-983f-c6cded5c5d18crt=20180620084"
Data Source readings ¥

Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format int64

Number Format float64

Compression D

Asset Framework [fledge/data_piwebapi/default

hierarchies tree

Asset Framework 1 O
hierarchies rules

Pl Web API anonymous ¥
Authentication Method

Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos piwebapi_kerberos_https.keytab
keytab file

0OCS Namespace name_space

0OCS Tenant ID ocs._tenant_id

OCS Client ID ocs_client_id

OCS Client Secret ®

_images/omf-plugin-ocs.jpg
omf

Endpoint OSlsoft Cloud Services ¥

Server hostname pi-server

Server port, O=use the 0

default

Producer Token uid=5ced49c3-3a55-40e7-983f-c6cded5c5d18crt=20180620084"
Data Source readings ¥

Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format int64

Number Format float64

Compression D

Asset Framework [fledge/data_piwebapi/default

hierarchies tree

Asset Framework 1 O
hierarchies rules

Pl Web API anonymous ¥
Authentication Method

Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos piwebapi_kerberos_https.keytab
keytab file

0OCS Namespace name_space

0OCS Tenant ID ocs._tenant_id

OCS Client ID ocs_client_id

OCS Client Secret ®

_images/omf-plugin-pi-web1.jpg
Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression e

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework 0 {
hierarchies rules

Pl Web API Authentication anonymous ¥
Method

Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/omf-plugin-pi-web.jpg
Server hostname localhost
Server port, O=use the 0

default

Producer Token omf_north_0001
Data Source readings ¥
Static Data Location: Palo Alto, Company: Dianomic
Sleep Time Retry 1

Maximum Retry 3

HTTP Timeout 10

Integer Format inte4
Number Format float64

Compression e

Asset Framework [fledge/data_piwebapi/default
hierarchies tree

Asset Framework 0 {
hierarchies rules

Pl Web API Authentication anonymous ¥
Method

Pl Web APl User Id user_id

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https.keytab
file

0OCS Namespace name_space
OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client id

OCS Client Secret

_images/opcua_1.jpg
O] (2]

Plugin & Name Review Configuration
. ocs_vz
North Plugin
OMF
opcua OPCUA Server
pi_server

available plugins

Name OPCUA Server

Repeat 0
(Interval)

Back

01:00:00

Done

_images/omfhint.jpg
oO—O

Plugin Name Review Configuration
OMF Hint vi1{
v2 "asset": {
. "number": "float64"
4| }
5/}

Enabled

Previous Done

_images/jira_1.jpg
Notification Instance

Jira Host
Project
User

API Token
Summary
Description
Type

Addtional Fields

Enabled

Rule Delivery Channel

Done

story

_images/tshooting_pi_010.jpg
Help pages: PI Web API Help > System > Landing

"ProductTitle™: "PI Web API 2019 SP1",
"ProductVersion™: "1.13.0.6518",
"Links": {
"Self": "https://piserver 1/piwebapi/system”
"CacheInstances": "https://piserver 1/piwebapi/system/cacheinstances™,
"Configuration”: "https://piserver_ 1/piwebapi/system/configuration”,
"UserInfo": "https://piserver 1/piwebapi/system/userinfo”,
"Versions": "https://piserver l/piwebapi/system/versions”,
"Status™: "https://piserver 1/piwebapi/system/status”,
"InstanceConfiguration”: "https://piserver_ 1/piwebapi/system/instanceconfiguration”

_images/tshooting_pi_009.jpg
i {
Y T T OB T VGTTON
T ot peationts
HaRpionty R stera’for contiguration data.”,

S R At oy

ettt et ity
SERA v g e

inerat b et in e Pt g Syt
i e A i
e 0

i
vty risorae azvornyivneo. o o,
PRttty R
S ;i.

B
e s e e A =
Lz i i
e P i e
s 5 fieeon
ETR I it it £
e = B

[Eemeal e 2

_images/kafka.jpg
o—@

Plugin & Name

Bootstrap Brokers
Kafka Topic
Send JSON

Data Source

Back

Review Configuration

localhost:9092 kafka local:9092
Fledge
Strings v

readings v

Done

_images/usb_1.jpg

_images/jira_2.jpg
0 TEST-16 Give feedback

Transformer 1 Coolant Temperature Backlog v
@ Attach Create subtask @ Link issue Issue Tree

Assignee

) Unassigned
Description

Report from FogLAMP of high temperatures in transformer 1 coolant. The alert triggered at 2020~
07-03 13:40:14.713829+00:00.

Reporter
@ MarkRiddoch

Activity Lavets
Show: History Worklog Transitions Hierarchy None

o Add a comment.. priority

1 Medium

press (M| to comment

Open Draw.io Diagrams.

v Show 6 more fields
Story Points, Original Estimate, Time tracking.

Created 2 minutes ago O Configure
Updated 2 minutes ago

_images/update_certificate.jpg
Upload Certificate

Key 2. Choosefile Nofile chosen
Certificate 2. Choosefile Nofile chosen
Overwrite

Overwrite allows to replace the existing key or certificate

_images/log_1.jpg
o— 0

Plugin Name Review Configuration

Asset filter

Enabled

Previous

_images/user_management.jpg
+i+. FOgLAMP

® aj/FogLAMP

Received: 9,679 Sent: 0

Dashboard

Assets & Readings User Management
South

North ID Username
Notifications 1 admin
Configuration 2 tisaE
Schedules

Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

User Management

Support

Settings

Uptime: 00:19:12

Add User

Roles
Role
admin super admin active
user change role reset password delete logout active sessions

© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

admin v

_images/lathe.jpg
Lathel South Service

Lathe Name lathe.

Spin up time s

Cutting time s

Idle time s

Spin down time 6

RPM 500

Current 750

Show Advanced Config

Enabled

Applications ©

cancel -

_images/usb_2.jpg
Asset Name

Connections

o—O (3]

Plugin & Service Name

Previous

Review Configuration Done
usba704
I {
2+ "analogue_example": {
3 "analogue”,
4 "AI0",
5 "valuel”,
6 "scale": 0.1
7 I
8+ "digital example": {
9 "digital",
10+ 1
11 "DI0",
12 “pI1",
12 anTon

_images/login_dashboard.jpg
FogLAMP ® aj/FogLAMP Received: 10,085 Sent: 0 Uptime: 00:20:52 admin v

Dashboard

. 10 minutes v Select Graphs v
Assets & Readings
South
Readings received by FogLAMP Readings received from asset sinusoid
North
Notifications 80 ® . . 16 e e
bo00oe spO00000S ®900000000@ so00®00090e ° [Z 2 22 2 J P00 00090 000000000000 00000 o000 00
70 14
Configuration °
9 60 12
Schedules a0 1o
40 8
Certificate Store 30 6
20 4
Backup & Restore
10 2
LOQS oh‘ob‘ob‘ob‘o"abb‘ebbb‘ohb‘ob Ob‘)b‘o‘oéo@")"o%%‘obéobbh%‘o‘)
NS EE S S o o
— RNV R GO R R R RV O AR A AR S AR R AR AR
udi
Notifications
Total since startup: 10,069 Total since startup: 7,069
Packages
System
Tasks

User Management

Support

Settings © 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/validity.jpg
AX8 South Service

o—0O

Plugin Name Review Configuration

Area Labels
"areas": [
",
"y,
"3,
"y,
s,
e,
"y,
g,
"y,
wign

Enabled

Previous

_images/login.jpg
+:=. FogLAMP ® aj/FogLAMP Received: 6,246 Sent: 0 Uptime: 00:01:19

Login with Certificate . Forgot Password?
Setup Instance

© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/user_pulldown.jpg
- FogLAMP ® aj/FogLAMP Received: 10,729 Sent: 0 Uptime: 00:23:02

Dashboard

.

Assets & Readings

South . .
Readings received by FogLAMP
North
Notifications 80 s s s
[X2 X J 000009 QOOGOOS sooe®o0o00e0 ..l..‘...O
70
Configuration
9 60
Schedules A
40
Certificate Store 30
20
Backup & Restore -
Logs o N N N QO N Q N N 8] N N N O O N QO N N N N
208 @ o S0 VT P TG R
Audit AU A N U R A A A A P N

Notifications

Total since startup: 10,729
Packages
System

Tasks

User Management

Support

admin v
10 minutes
® Log Out
(M Shut Down
Readings received from asset sinusoid
& Restart
16 e 2

0000000000000 00000800 DOCOOOOGOOCGOY ¢ VOGO
14

12
10
8

Total since startup: 7,201

Settings © 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

_images/metadata.jpg
o— 0

Plugin Name Review Configuration

Metadata to add

"floor": "Third",
"location": "AirIntake",

"unit": "Celsius",
"serialNo": "A73953-42492-3229"

2
3
4
5
6

Enabled o

_images/view_graph.jpg

_images/max31865_3wire.jpg
“‘Jl ’_ l"" - .,,

)um *aua Hsku!u "’5 el
(AR RN

L\‘ "GND CLK SDI ROY .

_images/vibration_1.jpg
Sine South Service

o—— 0O

Plugin Name Review Configuration

Asset name VibrationFeature
Observation interval (ms) 10

Enabled

Previous

_images/influxdb_11.jpg
OO0 (2]

Plugin & Name Review Configuration Done

URL https://eu-central-1-1.aws.cloud2.influxdata.com
InfluxDB token

Organisation ID

Bucket

Measurement foglamp
Source readings v
Filter Rule 0

Apply Filter =]

Back

_images/influxdb_1.jpg
Host

Port

Database

Username

Password

Source

L L

Plugin & Name

Back

Review Configuration

influxdb.local
8086

foglamp

readings v

Done

_images/tshooting_pi_008.jpg
Holp pages: FI ush APT Hslg > Asce:

«
ks 1),
it

h
wabrar
“Lis wiatcoced.s

LRSSy D ELEBRFGVOLOLTIN) NIVEFTHDVS”
74564 asaz-1904REbOINLE",

3161134571 31.09031502",

[
5 5337 T 7 P VI) S 354l Sy
i 7}% st gucentacte
ehttaa://pIseCust |/ Eivsagi/vesstoe e o ST i oL (icxtionplusine
7y et eeve /b Fineyiti i, sscicityidmneisioet,
= e e > s i [g
et st et 1/l unops/aace Cioevees VURSY;bA i .5 T —
“hnalyesshulabLug oot PhEEpet gL shreee /iRt st es e e P i eijselplugions
“rimeRlerluging®s "htipai/ pisarver {/Guetaptse s rvace/FIH T AL T T
“aaturity et B et ELTaEL tsseksatuets FIREYOS kgt LAY et
A et D bkt i S

HAIATS "FIRSUSFEYRSVECNL0IN2_SKAUELTRYIVRVIONY
“Li “ETebeob ST34 d0bo- a166-BIORTELBNI",
lana"s “pissever 17,
Desceipeionts
P M\ Wpisekvee 17,
“Eaconnactad®s £ai
“Serveriacaions v,
“Servertine" mull,
IBrtendedbropertaess (),
“Linksts |

elen

VBChEeth2 kAVEITRVIVRYIENG",

Mtpe://piserver 1/plushaps /sosstsecvers/Finsus

“Databssss™ PRLELSTTTEEEIVer 1/ vLb st e e e vare/ P ITCLs oy REVER SIS SAVEITRY RV asss st sbases”,
Jissitscrve co VIS eFIRVECKINDIA SHUEITRVINATS

notscicaticncontact

iatasn,

MotiFicatssocontas TampIates™s “hetpst/ piseriar 1/EIU:
TNotificationbluglngs “hitps:)/pisscver 1/procbapt assstasrrers PIFSussH
“Securityldsneatiesn; "hitpes/

TSecuri tykapings*™: “heiy

7elShy sUEITRVVEY

notiFicsionpTugine",
Secuctndntities”,

PSR
Analysonule1usThs"s ThEESS: /ot st rver 1/ Eiuskipt / sssetssrve o /FIRSUSSFIyRSVETRI 00N SENIETTRURTIMNG dnatisisculoplugina”

“TinahslaFloglnets “hepet ToSetver | oTu sps ot toncrece TR il TSR LRI TR NV NS et s
SeCurity"s “hicps://pisstrer 1/piushaps/ sssstostvero/FIRSueEE T5tho SEAVEITRYNEVORG sscuri ey
PR A v e it i DO O

’

s

_images/threshold.jpg
Expression

Enabled

or—0

Plugin Name

Previous

Review Configuration

speed > 10

_images/img_002.jpg
Authentication Method

anonymous

_images/tshooting_pi_001.jpg
Help pages: PI Web API Help > Home > Get

{
"Links"
"Self": "https://piserver 1/piwebapi/",
"AssetServers": "https://piserver 1/piwebapi/assetservers”,
" “: “hitpe://piserver 1/piwehapi/dataservers”,
C'omf": "https://piserver 1/piwebapi/omf"™, >
o T ttpsST//pPIsServer_1/pt Ttch"”,
"System": "https://piserver 1/piwebapi/system"
}

}

_images/img_001.jpg
O—©

Plugin & Service Name

Hostname

Server port, 0=use the default

Authentication Method

User Id
Password
PlPoint

Attributes

Pl Server type
Server instance hame
Database to use

Path on the server

Previous

Review Configuration

localhost

basic v
user_id
LIXTTTYYY ®

PIPoint

<

2 "items": []

Pl Asset Framework

Serverlnstance

Database

Path

Done

<

_images/threshold1.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

Rule Delivery Channel

0.0
Single Iltem v
Average v

30

Done

_images/img_004.jpg
Path on the server foglamp/iddes 4758

_images/tshooting_pi_003.png
Dashboard
Assets & Readings

South

Notifications

Configuration

North Instances

Process

North Readings

» Pl

Status

disabled

Plugin

OMF

Version

190

Sent

_images/img_003.jpg
Attributes

"items": [
attE AL,
"attr_4_2",
"atEr 43"

G e W e

_images/tshooting_pi_002.jpg
https://piserver_1 is requesting your usemame and password
The site says: "P| Web API"

User Name:

Password: | eeeeeseese

- cance

_images/import.jpg
Upload Certificate

Key & Choose file | Nofile chosen

Certificate 2, [Grossofie Jno e chosen

) Overwrite
rite allows to replace the existing key or certificate

_images/tshooting_pi_005.jpg
Help pages: PI Weh API Felp > DataServer > List

Links
"Items

i

ebTd": "F1DSqEe26YHaZkewt | KUNAXLEWVOLOLTMYM BNVTFTHOVY"

0" "e9b647a8-da8 -4 Tda-b052-32945£85CHTE",
IN-3220MU1S05E",

ath": "\\\\PIServers[VIN-3228MU18058]",

sConnected": fal

verVersion”s ™,

ervecTine™s null,

Rt _)
e Tt e e e v e
e - e PTG enum ationsats
)

3
1
)

_images/img_005.jpg
Pl Server type Pl Asset Framework v

PI
Server instance name

PI Data Archive

_images/tshooting_pi_004.jpg
Help pages: PI Web API Help > Home > Get

{
"Links": {

"Self": "https://piserver 1/piwebapi/”,

"AssetServers™: "hittps://pi ruer 1/piwehapi/a tservers",
"DataServers": "https://plserveril/plwebapl/dataservizilz>
TOME Tt tpST77PLServer 17/ piwebapt7 omt

"Search™: "https://piserver 1/piwsbapi/search”,

"System": "https://piserver 1/piwebapi/system”

}

_images/ina219_1.jpg
)

Plugin & Service Name Review Configuration
Asset Name electrical

12C Address 6e

Voltage Range ava

Previous

Done

_images/tshooting_pi_007.jpg
Help pages: PI Web API Help > Home > Get

{
"Links": {
"Self": “"https://piserver 1/piwebapi

@Servers": "https://piserver _l/piwebapi/assetservers, >

"Dataservers"T “HTTpS://PiSerVer 1/ piwebapl/dataservers ,
"OmE": "https://piserver 1/piwebapi/omE”,
"Search™: "https://piserver 1/piwebapi/search™,

"System": "https://piserver 1/piwebapi/system”
}

_images/ina219.jpg

_images/tshooting_pi_006.jpg
Help pagest EE e ATt Halp > Gataservec > Setpoises
f

e,
i v
Pt e ot
Sintepeistedoa T
iy i

V) TIOEATk AL AL
T

Tanart ETI0OTTITIONNNG Inesmicsment saset 3.

_images/ifttt_1.jpg
marke@ri.

Account
Activity
My Applets
My services
Create
Help

Sign out

_images/thingspeak_4.jpg
o———0© (]

Plugin & Name Review Configuration Done
URL httpsjapi.thingspeak.com/channels
APIKey
Source readings v
Fields i i
2v "elements": [
3v {
4 "asset": "sinusoid",
5 "reading": "sinusoid"
6 }
7 1
8)
Channel ID o

Back

_images/http_12.jpg
e 1

Plugin & Service Name

Host

Port

URI

Asset Name Prefix
Enable HTTP
HTTPS Port

Certificate Name

Previous

Review Configuration

0000
6683
sensor-reading
http-

6684

fledge

Done

_images/thingspeak_3.jpg
Channels - Apps~ Support

ThingSpeak

sinusoid

Channel ID: 556345
Author: markdianomic
Access: rivate

Test channel

PrivateView PublicView ChannelSettings Sharing

Write API Key

Koy PO TEANSRe

Read API Keys
ey eHSEEmSNINGD

Note

APl Keys

ommercial Use HowtoBuy b

Data Import / Export

Help

AP1keys enable you to write data to a channel orread data from a privte channel. AP
Keys ae auto-generated when you create a new channel,

API Keys Settings

» Write API Key: Use thiskey to write data o 2 channel. fyou feelyour key has
been compromised,cick Generate New Write API Key.

= Read API Keys: Use tis key toallow other people toview your private:
channel feeds and charts Click Generate New Read AP Key o generate an
additonal read key for the channel.

‘» Note: Use tis field to enter information about channel read keys. For example,
add notes t keep track of users with access to your chanel,

API Requests

Write a Channel Feed

GET https://api. thingspeak. con/update?api_key=Smmummmy
—icls

Read a Channel Feed

GET https://api. thingspeak. con/ channels/556345/ feeds. json?
ap.._key - NS o

Read a Channel Feld

GET https: //api. thingageak. con/ channels /556345 fields/1.1s.
cnTapi_ ey 1113

Read Channel Status Updates

GET https://api. thingspeak. con/ channels/556345/status. json
7api_k

Lear More

_images/ifttt_2.jpg
Notification Instance

IFTTT Trigger
IFTTT Key

Enabled

Previous

Rule

button_press

Delivery Channel

XHXOKHXXHXKXXKKXXKKXXKXXXKXXKKXXKKX

4

Done

_images/notification_5.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

Rule

FastSine

sinusoid

05

Maximum "

Mi um

30

(2]

Delivery Channel

Done

_static/comment.png

_static/comment-close.png

_images/notification_7.jpg
o (2] o o

Notification Instance Rule Delivery Channel Done

Slack Webhook URL https://hooks.slack.com/services/T2GBZ52AF/BGFNTP7NG/YJxQwiJda5ZHMirFZqUjUc
Message Text The value of the sinusoid is greater than 0.5

Enabled)

Previous

_static/down.png

_images/notification_6.jpg
o O °) (<]

Notification Instance Rule Delivery Channel Done

Delivery Plugin alexa
asset
Blynk

email

available plugins

Previous

_static/down-pressed.png

_images/notification_edit.jpg
Above0.5

Asset name sinusoid
Datapoint name sinusoid
Condition

Trigger value 05
Evaluation data Single ltem v
Window evaluation Maximum ¥

Time window 30

Slack Webhook URL https://hooks.slack.com/services/T2GBZ52AF/BLHAEQVPX/SpTueik9t73KSaNSe3

Message Text The value of the sinusoid is greater than 0.5

Enabled v

_static/file.png

_images/notification_8.jpg
Notification Instance

Trigger

Enabled one shot
retriggered
toggled

Rule

Delivery Channel

ne

o————0O

Done

_images/notification_log.jpg
=i FogLAMP ® aj/FogLAMP Received: 17,623 Sent: 0 Uptime: 00:14:56

Dashboard

Assets & Readings Notification Logs

South
Source Severity Search
North ALL v INFORMATION v
Notifications
Timestamp Name Severity Source

Configuration

2020-05-08 13:20:11 Above0.5 INFORMATION NTFSN
vehenying 2020-05-08 13:19:07 Above0.5 INFORMATION NTFSN
Certificate Store 2020-05-08 13:18:06 Above0.5 [NFORMATION NTFSN
Backup & Restore 2020-05-08 13:17:33 Above0.5 INFORMATION NTFAD
Logs 2020-05-08 13:05:55 FN INFORMATION ~ NTFST
2020-05-08 11:58:28 FN INFORMATION ~ NTFST

al 2020-04-17 13:46:09 FN INFORMATION ~ NTFST
2020-04-17 08:23:16 FN INFORMATION ~ NTFST
Packages 2020-04-17 08:21:25 FN INFORMATION ~ NTFST
System 2020-04-17 06:49:34 FN INFORMATION ~ NTFST
Tl 2020-04-17 06:47:33 FN INFORMATION ~ NTFST
2020-04-17 06:25:19 FN INFORMATION ~ NTFST

Support 2020-04-14 13:47:17 FN INFORMATION NTFST
Settings 2020-04-10 08:48:06 FN INFORMATION ~ NTFST
2020-04-09 15:03:44 FN INFORMATION NTFST

Q

_static/plus.png

_images/notification_list.jpg
i+ FogLAMP ® aj/FogLAMP

Dashboard

Assets & Readings Notifications: &

South
Narth Name Channel

Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings

Received: 16,844 Sent: 0

Rule

Threshold

Uptime: 00:12:40

Type Status

one shot

© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

o

Create Notification Instance + €

i
~

_static/minus.png

_images/notification_settings.jpg
MyNotificationService Notification Service

Minimum Log Level warning v

Maximun number of 2
delivery threads

Enabled

Eencel -

Delete Service

_images/notification_log_type.jpg
Notification Logs &
Count: 13

ALL v INFORMATION

ALL 3
Severity Source

NTFDL - Notification Deleted
INFORMATION ~ NTFSN

NTFAD - Notification Added
INFORMATION NTFSN

NTFSN - Notification Sent
INFORMATION NTFSN

NTFCL - Notification Cleared
INFORMATION NTFSN

NTFST - Notification Server Startup
INFORMATION ~ NTFST

NTFSD - Notification Server Shutdown INFORIMATION TEST
2020-04-2109:20:15 MyNotificationService INFORMATION NTFST
2020-04-2109:15:32 Above0.5 INFORMATION ~ NTFAD
2020-04-20 14:47:38 MyNotificationService INFORMATION NTFST
2020-04-2014:28:17 MyNotificationService INFORMATION NTFST
2020-04-2013:56:17 MyNotificationService INFORMATION NTFST
2020-04-2013:54:27 MyNotificationService INFORMATION NTFST

2020-04-2011:22:38 MyNotificationService INFORMATION ~ NTFST

_images/notification_settings_icon.jpg

_images/view_hide.jpg
sensehat/gyroscope

1 minute v Graph Summary

0.004

0.003

0.002

0.001

-0.001

-0.002

-0.003
14:29.07 142912 14:29:17 142022 14:2927 14:29:32 142937 14:20:42 162947 142052 14

_images/mqtt-sub.png
o—— 0

Plugin & Service Name

MQTT Broker host

MQTT Broker Port

Keep Alive Interval

Topic To Subscribe

Qos Level

Asset Name

Previous

Review Configuration

localhost

1883

Room1/conditions

matt-

Done

_images/view_summary.jpg
sensehat/gyroscope

1 minute R

_images/modbus_2.jpg
Control

Control Map

_images/view_spreadsheet.jpg
sensehat_gyroscope-readings

timestamp z x y

2020-05-04 14:30:49.145006 | 0.000762725 00010765493 00022465643
2020-05-04 14:30:48.145022 | 00010962286 | -0.0004502609 0.000719551
2020-05.04 14:30:47.145006 | 0.0007928684 | 0.0032151192 | -0.0011130839
2020-05-04 14:30:46.145008 | -0.0013448559 | 0.0047423765 00001088944
2020-05-04 14:30:45.145000 | -0.0004286431 | 0.0007723272 -0.0020291833
2020-05-04 14:30:44.144999 | -0.0001233947 | 0.0013834909 0.0007194807

e e e e | 1 0724997 | 00001437888 | 0 00041430R8

_images/mqtt_02.jpg
Object Policy v Single reading from root level

&collapse.

Script single reading & nest
Multiple readings & collapse
Multiple readings & nest

_images/webcam.jpg
o—0@

Plugin & Service Name Review Configuration Done
Asset Name Webcamimages
Media type drectory
Media storage directory webcam
File data format Me v
Repeat loop o
Camera number 0

Frames per minute processed 10

_images/mqtt_01.jpg
o——G

Plugin & Service Name Review Configuration Done
Asset Name matt
MQTT Broker localhost
Username
Password

Trusted Certificate
Client Certificate

Private Key

Key Password >
Topic sensor

Object Policy Single reading from root level
Script

‘Choose files | No file chosen

_images/view_times.jpg
sensehat/gyroscope

1 minute v

1 minute
5 minutes
10 minutes
30 minutes
1 hour

8 hour

1day

_images/north_1.jpg
O () (4]

Notification Instance Rule Delivery Channel Done

North task name |

Assets to send i~
2 "assets": []
3 }

Pre-trigger time 5

Post-trigger time 0

Block Size 500

Enabled a)

Previous

_images/zendesk_2.jpg
Is Sample ticket: Meet t... x Is Test from FogLAMP = + Add Q % Bg

#1 #2
User Fields
Organisation Fields Zendesk API
Views Settings OAuth Clients Activity Target Failures
Macros
Tags Password Access @
Ticket Fields Enable API authentication using an agent's email address and password.

Ticket Forms

Dynamic Content Token Access o
We recommend that you use API tokens to keep your agents' passwords safe. When Enabled e
CHANNELS authenticating with tokens, add /token to the end of your username.
Email i
Active API Tokens (1)
Twitter
Sz FogLAMP
Facebook
Talk
Text
Widget
API
Mobile SDK

Channel Integrations

BUSINESS RULES

Triggers
Automations

Service Level Agreements

Answer Bot

_images/mqtt_1.jpg
Notification Instance

MQTT Broker
MQTT Topic
Trigger Payload
Clear Payload

Enabled

Previous

Rule Delivery Channel

topijmatlocal 1883
Fledge
Triggered

Cleared

Done

_images/zendesk_1.jpg
Notification Instance

Subdomain
Subject
Email

API Token
Comment

Addtional Fields

Enabled

Rule

Previous

9

Delivery Channel

Done

_images/notification_2.jpg
® (2]

Notification Instance Rule

o

Delivery Channel

Done

Name ‘ Above0.5|

Description Above0.5 notification instance

Back

_images/notification_1.jpg
#+. FogLAMP ® aj/FogLAMP

Dashboard

Assets & Readings
South

North
Notifications
Configuration
Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings

Received: 13,691 Sent: 0 Uptime: 00:02:08

©

Notification Instance Rule Delivery Channel

Name

Description

Back

© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

Done

Q

_static/ajax-loader.gif

_images/notification_4.jpg
Notification Instance

Asset name
Datapoint name
Condition

Trigger value
Evaluation data
Window evaluation

Time window

Previous

(2] (2]

Rule Delivery Channel

FastSine

sinusoid

05

Single Item v

Average v

30

Done

_images/notification_3.jpg
Notification Instance Rule

Rule Plugin Average

OutOfBound

SimpleExpression

Threshold

available plugins

Previous

(2]

Delivery Channel

Generate a notification when datapoint value crosses a boundary.

Done

_static/comment-bright.png

_images/modbus_1.jpg
Asset Name
Protocol

Server Address

port

Device

Baud Rate

Number Of Data Bits
Number Of Stop Bits
Parity

slave ID

Register Map

Timeout
Control

Control Map

modbus
R v
900
e
v ¢
20 “values': |
3v «
4 temperature”,
B “slave: 1,
6 "assetName”: "Boothl’,
“register’: 0,
8 “scale™: 0.1,
9 “offset”s 0
10 b
1y
12
i
“values'

_images/fft_1.jpg
Waveform South Service

o— 0

Plugin Name Review Configuration
Asset to analysis wave

Result Data

Frequency Bands 10

Band Prefix Band

No. of samples per FFT 8194

Low Frequency Reject % 0

High Frequency Reject % 0

Enabled

Previous

_images/sigma_11.jpg
Notification Instance

Asset name
SigmaRule Factor

Sample Size (hours)

Previous

Rule

(3]

Delivery Channel

Done

Current

20

_images/sigma_1.jpg
r—0

Plugin Name Review Configuration
Sample Size (hours) 1

Sigma 3

Statistics Asset

Enabled o

Previous

_images/filter_1.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

Service Info

Export Readings Delete Service

_images/sine_in.jpg
10 minutes v ‘ Graph | Summary.

I sinusoid I sine10

15 -

10

5
110431 11:0501 110531 11:0601 110631 110701 110731 110801 11:0831 110901 11:09:31 111001 11:10:31 111101 111131 119201 111231 11

_images/fft_2.jpg
Result Data
peak

Frequency Bands =0
ms

= spectrum
Band Prefix e

_images/sigma_2.jpg
0.4

0.3

0.2

0.0 0.1

34.1%| 34.1%

13.6%

M—30 u—20 Md—O M H+0

M+20 P+30

_images/filter_2.jpg
Sine South Service

®

Plugin Name Review Configuration

Plugin

Apply an expression to the data stream

expression

Install from available plugins

Name

Back

_images/sine_out_change.jpg
Graph Summary

[T

_images/filter_10.jpg
Pl Server

o—0O

Plugin Name

Metadata to add

Enabled

Previous

1
2

{

}

"floor": "1"

Review Configuration

_images/sine_out5.jpg
10 minutes. v Graph Summary

20

15

10

5
110416 11:04:46 110516 11:05:46 11:06:16 11:06:46 11:07:16 11:07:46 11:08:16 110846 11:09:16 11:0046 11:10:16 1110146 111116 11:11:46 11:12:16 11

_images/eventrate_2.jpg
Rate Units | esecons]
e
i
ity
Lockadie g

Exclusions

_images/setpoint_11.jpg
Notification Instance

Service

Trigger Value

Cleared Value

Enabled

Rule

"values": {

"value"

Delivery Channel

Done

_images/eventrate_1.jpg
Sine South Service

o— 0

Plugin Name Review Configuration
Event asset event
Trigger Reason
Terminate on Event v
Stop Reason
Full rate time (mS) o
Pre-trigger time (mS) 1
Reduced collection rate o
Rate Units per second v
Exclusions i R

“exclusions”: []

Enabled

Previous

_images/setpoint_1.jpg
Control Map Iean

2v values”
30

8 “name’
9 “registe:
10)

_images/expression_1.jpg
o——0O

Notification Instance Rule Delivery Channel Done

[TIT Simple EXpression

Threshold

Generate a notification based on the evaluation of a user provided expression

_images/setpoint_2.jpg
o——o o o

Notification Instance Rule Delivery Channel Done
Assetname MotorTempeature

Datapoint name temperature

Condition >~

Trigger value 00

Evaluation data Singi tam

Window evaluation erage v

Time window 2

Previous

_images/expression.jpg
L €)

Plugin Name Review Configuration
Datapoint Name calculated
Expression to apply log(x)
Enabled)

Previous

_images/setpoint_12.jpg
Notification Instance

Service

Trigger Value

Cleared Value

Enabled

Rule

"values": {

"value"

Delivery Channel

Done

_images/expression_2.jpg
Notification Instance Rule

(3]

Delivery Channel

Done

Asset name

Expression to apply

Previous

_images/expression_11.jpg
o———0O

Plugin & Service Name

Asset Name
Expression
Minimum Value
Maximum Value

Step Value

Previous

Review Configuration

Expression
clamp(-1.0,sin(2 * pi * x) + cos(x / 2* pi),+1.0)

-5

0.001

Next

Done

_images/setpoint_3.jpg
o (2] 2] o

Notification Instance Rule Delivery Channel Done
service Wotarran
Trigger Value |
20 values': (
5 e U1,
4 1200
s)
s b
Cleared Value N
20 “values': (
Tun": "0
)
¥
Enabled

Previous

_images/s7.jpg
e C)

Plugin & Service Name

Default Asset Name
PLC IP Address
Rack

Slot

Map

Previous

Review Configuration

57
127001

o

o

154 (R

2+ "items": [

3= {

4 "datapoint”: "dbl",
5 "area": "DB",

6 "DBnumber”: 1,

7 "start": 1,

8 "type": "byte"

9 }

10]

1)

Done

_images/enable_notify_service.jpg
Notification Service

Name MyNotificationService

Enabled

Cancel

_images/scaleset_1.jpg
o—0

Plugin Name Review Configuration
Scale factors - |
2v "factors": [
£ €
4 "asset": ".*",
5 "datapoint”: ".*",
6 "scale’: 1,
7 "offset": 0
8 ¥
9 1
10)
Enabled o

Previous

_images/enable_https.jpg
Fledge Admin and User REST API

Enable HTTP (=]}
HTTP Port 8081
HTTPS Port 1995

Certificate Name fledge

o
e

_images/scale.jpg
Sine South Service

o—0O

Plugin Name Review Configuration

Scale Factor

Constant Offset

Asset filter

Enabled

Previous

_images/envirophat_2.jpg
o— (0

Plugin & Service Name

Asset Name Prefix

RGB Sensor

RGB Sensor Name
Magnetometer Sensor
Magnetometer Sensor Name
Accelerometer Sensor
Accelerometer Sensor Name
Weather Sensor

Weather Sensor Name

Previous

Review Configuration

magnetometer
@

accelerometer
@

weather

Done

_images/sensehat_1.jpg
-

Plugin & Service Name Review Configuration

Asset Name Prefix

Pressure Sensor

Pressure Sensor Name
Temperature Sensor
Temperature Sensor Name
Humidity Sensor

Humidity Sensor Name
Gyroscope Sensor
Gyroscope Sensor Name
Accelerometer Sensor
Accelerometer Sensor Name
Magnetometer Sensor
Magnetometer Sensor Name
Joystick Sensor

Joystick Sensor Name

sensehat/

pressure

temperature

humidity

gyroscope

accelerometer

magnetometer

ioystick

Previous

Done

_images/envirophat_1.jpg

_images/sensehat.jpg

_images/replace.jpg
oO———0O

Plugin Name Review Configuration

Replace i
with

Enabled [m]

_images/rename.png
o— 0

Plugin Name Review Configuration
Operation et v

Find sssethame

Replace With newssethame

Enabled o

_images/rest_01.jpg
Asset Name =
URL [m——

eaders. o

Initial 1D

10 Fiold
start

end

Timestamp

Time Format

Timezone wana0

Collapse 8

Asset Field

Seript

[

_images/reset_password.jpg
Update User Password

Username

user

_images/rms_1.jpg
Waveform South Service

o —0

Plugin Name Review Configuration

Sample size 10
RMS Asset name %a RMS
Include Peak Values
Include Crest Values
Include Raw Data

Asset filter .

Enabled 0

Previous

_images/rest_02.jpg
Selection Method

ID Parameter

Initial ID

_images/gcp_menu.jpg
= Google Cloud Platform

_images/systeminfo_1.jpg
D=0 (]

Plugin & Service Name Review Configuration Done

Asset Name Prefix system/

Previous

_images/storage_03.jpg
Advanced v Storage Plugin &

» Scheduler
Pool size 5
» Service Monitor
v Storage No. Readings per 15
+ sqlite database
No. databases to 3
allocate in
advance
Database ¥
allocation
threshold
Database]

allocation size

_images/graph_icon.jpg

_images/systeminfo_3.jpg
system/processes
5 minutes ~ Graph Summary

| runing. [N siooping. [N stopped NN pacing [N ceac NN zombie

80

0

60

50

W

3

20

—_— A A A A A A A A A A A M

 —
MA01 MBEN 1120 1E8131 18T MSES 118201 118211 1A221 118281 114241 113251 13801 11831 118321 18831 1341 L8381 113401 13K 113421 11:0431

_images/gcp_registry.jpg
Soogle Cloud Platform | & foglamp

‘& IoT Core Registries

= Fitter registries)

O rRegistyo 4 Region Protacol Telemetry Pub/Sub topics

_images/systeminfo_2.jpg
Rsset
system/cpubsage.all
system/diskTraffic_loop0.
systemjdiskTraicJoop1
systemdiskTrafic_loop2
system/diskTraffc_sda
systemdiskTrafic_sdb
system/diskUsage_dev/loop0
system/diskUsage_devloop!
system/diskUsage_devisda2
systemdiskUsage.devsdbt
system/iskUsage_tmpfs
systemdiskUsage.udev
systemhostName
system/loadhverage
system/meminfo
systemnetworkTraffic_enp0s3

systemjnetworkTraft

system/pagingAndSwappingEvents
systemjplatform
systemjprocesses

systemjuptime

Readings
9
9
%
9
9
%
%
9
%
%

an
%
%
%
%

9
%
9
%
04

EREERERRERRRRRRERRRERRRERERR
L e o S S O T S

_images/gw65_1.jpg
o—6

Plugin & Service Name Review Configuration
Asset Name gwe5
MQTT Broker localhost

Previous

Done

_images/telegram_2.jpg
397 q

chats Fledge

fstart 0.

[get status ;5.

Pump 7 Rate has been ‘riggered:
'ALERT for rulePump 7 Rate'

e

_images/graphite_1.jpg
Host

Port

Asset Root

Source

o———0©

Plugin & Name

Back

Review Configuration

graphite.local
3000
foglamp

readings v

Done

_images/telegram_1.jpg
Notification Instance

Telegram BOT API token
Telegram user chat_id
Telegram BOT API url prefix

Enabled

Rule

https://api.telegram.or/bot

Previous

Delivery Channel

Done

_images/http_11.jpg
O——0O

Plugin & Name

URL
Secondary URL
Source

Headers

Sleep Time Retry
Maximum Retry
Http Timeout (in seconds)

Verify SSL
Apply Filter

Filter Rule

Review Configuration

http://localhost:6683/sensor-reading

readings v

1 {}

Back

Done

_images/thingspeak_2.jpg
[ThingSpeak

Chan

New Channel

Description

Link to External
site

Link to GitHub,

Elevation

Show Channel
Location

Show Status

Field Label 1

(735 v comma seprted)

g/

s fgthub com)

00

00

hapy/

Help

Channelsstorealthe datathat a ThingSpeak applicaton calects. Each channel includes.
eightfieds that can hold any type of dats, plus three ields forlocation data and onefor
status data. Once you collect data in achannel,you can use ThingSpeak apps o analyze
andvisualizeit.

Channel Settings

« Percentage complete: Calculated based on data entered nto the variousfelds
of a channel. Ente the name, description,lcation, URL,video, and tags to complete:
your channel.

« Channel Name: Enter a unique name fo the ThingSpeak channel.
 Description: Enter a description ofthe ThingSpeak channel.

 Field: Check the box o enable the field,and enter field name. Each ThingSpeak
channel can have up o’ felds.

« Metadata: Enterinformation about channel data, including JSON, XML, or CSV
dita,

« Tags: Enterkeywords thatideniythechannel Seporae tags vithcommas.

« Link to External Site: Ifyou have a website that contain information about your
ThingSpeak channel specifythe URL.

« Show Channel Location:

o Latitude: Specity thelatitude postionin decima degrees. For example,the
laitude of th ity ofLondonis 515072

© Longitude: Specify the longitude positionindecimal degrees. For ecamle,
the longitude of the ity of London s-0.1275.
© Elevation: Specifythe levation position meters.For example,the elevation
oftheciy of Londonis 35,052
« Video URL: Ifyou have a YouTuber™ or Vimeo®video thatdisplays your channel
information, speciy the fullpath ofthe video URL.
« Link o GitHul
repository URL.

youstore your ThingSpeak code on GitHub®,specify the Github

Using the Channel

Vou can gt datanto a channel from a device, websie,or anather ThingsSpeak channel,
You canthen visualize data and transformit using ThingSpeak Apps.

See Get Started with ThingSpeak” for an example of measuring dew point from a
weatherstation that acquires data from an Arduino® device

Learn More

_images/http_1.jpg
O=——0 (2]

Plugin & Name Review Configuration Done
URL http:/localhost:6683/sensor-reading
Source readings v
Verify SSL o
Apply Filter s]
Filter Rule 0

Back

_images/thingspeak_1.jpg
L1 ThingSpeak™ channels - = Apps~ Support~ Commercial Use ~ HowtoBuy MR

My Channels Help

Collect data in a ThingSpeak channel from a device,

’ Search by ta
te AL E from another channel, or from the web.
Click New Channel to create a new ThingSpeak
Name Created Updated channel.
N Click on the column headers of the table to sort by the
& sinusoid 20180808 2019-07-26 15:04

entries in that column or click on a tag to show channels
thattag.

Private | Public | Settings | Sharing | APIKeys | Datalmport / Export

Learn to create channels, explore and transform data.

Learn more about ThingSpeak Channels.

Examples

o Arduino

Arduino MKR1000
ESP8266
Raspberry Pi
Netduino Plus

Upgrade
Need to send more data faster?

Need to use ThingSpeak for a commercial project?

_images/gcp_add_registry.jpg
Google Cloud Platform

ﬂz loT Core & Create a registry

Define how devices in this registry will send data to Cloud IoT Core. After you create your
registry, you can start adding devices to it Learn more

Registry properties

Registry ID

Permanent identifier for your registry. 3-255 characters. Start with a etter. You can also
include numbers and the following characters: +. % - _~

Region -

Determines where data s stored for devices in this registry. Choice is permanent

Cloud Pub/Sub topics

Cloud loT Core routes device messages to Cloud Pub/Sub for aggregation. You can route
messages to different topics and subfolders in Cloud Pub/Sub based on the type of data
in the messages. Learn more.

Select a Cloud Pub/Sub topic:
None -

Device telemelry events will be published to this topic by default.

<+ ADD ADDITIONAL TOPIC

\/ SHOW ADVANCED OPTIONS

(LN CANCEL

_images/storage_01.jpg
Dashboard

Assets &Readings Installation &

South Advanced

North . General Maximum Update 1

Notifications » Utilities. Upgrade oninstall [
“ -

Schedules Pyze Available .

Certificate Store Packages Cache

Backup & Restore

Logs

_images/gcp_03.jpg
Google Cloud Platform

New Project

Project name *
[fledge-demo

Project ID: fledge-demo. It cannot be changed later. EDIT

Organization

| dianomic.com

“This project will be attached to dianomic.com.

Location *

‘ B dianomic.com

BROWSE

Parent organization or folder

(CIT8 CANCEL

_images/statistics_1.jpg
Sine South Service

— 5

Plugin Name Review Configuration

Sample Size (mS)
Mean

Mode

Median

Minimum
Maximum
Standard Deviation
Variance

Enabled

Previous

_images/gcp_devices.jpg
ol

Google Cloud Platform < d produ

loT Core Devices + CREATE A DEVICE @ DELETE

Registry details

Registry ID: flreg1
Devices us-centrall
Gateways. Devices are things that connect to the internet directly or through a gateway. Learn more
Monitoring Enter exact device ID
O deviceid Communication Last seen
o axs @ Allowed -
O coar @ Allowed -
O event @ Allowed -
O mak @ Allowed Jan 9,2020, 11:24:43 AM
O sine @ Allowed -
O sinusoid @ Allowed -
O sinusoidbla @ Allowed Jan9,2020, 8:31:34 PM
O sinusoidtest @ Allowed Jan7,2020, 5:13:40 AM
sinusoidtest1 @ Allowed Jan7,2020, 421:05 PM

Cloud loT Core documentation

Stackdriver Logging
Registry defaut
Registry default
Registry defaut
Registry default
Registry default
Registry defaut
Registry defaut
Registry defaut

Registry defaut

_images/gcp_create_device.jpg
Google Cloud Platform

w loT Core <& Create a device

B Registry details
Device D

o Devices Permanent dentifer for your device. 255 characters. Stat with letter. You canaiso

include numbers and the following characters: + % -_~

Gateways

@ Monitoring Device metadata (optional)

You can set custom metadata, such as manufacturer, location, etc. for the device. These
can be used to query devices in this registry. Leam more.

<+ ADD ATTRIBUTE

/ COMMUNICATION, STACKDRIVER LOGGING, AUTHENTICATION

_images/storage_02.jpg
Advanced v Storage configuration &

» Scheduler
Storage Plugin)
» Service Monitor 9¢ Plug salts
» Storage Readings Plugin
Database threads 1
Manage Storage O
Service Port 0
Management Port o

_images/slack_01.jpg
Notification Instance

Slack Webhook URL
Message Text

Enabled

Previous

Rule Delivery Channel

https:/hooks.slack com/services/T2GBZ52AF/BGFNTP7NG/YJxQuiJda5ZHMirFZqUjUc6z

Done

The temperature o the coolant in pumpd is above normal operating levels|

_images/filter_9.jpg
Pl Server

®

Plugin Name

fft
FlirValidity 2 gata iter plugin

metadata

python27

Install from available plugins

Review Configuration

Name | Floor|

_images/slack_3.jpg
10:07 ¥ w T

= marke Q

Today

MarkDemo APP 9:59 AM
Pump 4 Coolant

ALERT for rulePump 4 CoolantNotification
has triggered

The temperature of the coolant in pump4
is above normal opersting levels

Jot something down

)

@ Aa 0z

_images/filter_8.jpg
Pl Server

Pl Web API Password

Pl Web API Kerberos keytab piwebapi_kerberos_https keytab
file

0OCS Namespace name_space
0OCS Tenant ID ocs_tenant_id
OCS Client ID ocs_client_id

OCS Client Secret

Show Advanced Config
Enabled

Exclusive

Interval 00:00:30

Applications @

Delete Instance

_images/slack_2.jpg
Today

MarkDemo 4% 9:59 AM
Pump 4 Coolant

ALERT for rulePump 4 CoolantNotification has triggered

The temperature of the coolant in pump is above normal opersting
levels

Jot something down

g B I & @ &

_images/foglamp_architecture.png
FoGLAMP

Value Threshold
Diff Threshold

Create

External App

_images/sparkplug_1.jpg
o——O@

Plugin & Service Name

Asset Name
MQTT Host
MQTT Port
Username
Password

Topic

Previous

Review Configuration

matt
chariot.groov.com

1883

opto

SPBV1.0/0pto22/DDATA/groovEPIC workshop/Strategy

Next

Done

_images/flir_setup.jpg
= $FLIR

CAMERA | seTTNgs | sTorAaGE | HELP.

LI SR L (] Sl A Load preset Save preset
527 Measurements & alarms a
1 =
P asc A
il =
g max 467°C @
min201°C A
avg:340°C A
B o R
ca o max:-°C | A
min:-C | A
avg a
] 382°C A
Colorize B
Palette Lava +

0 Log information

N @ #

_images/south_advanced.jpg
Maximum Reading Latency (mS)
Maximum buffered Readings
Reading Rate

Throttle

Reading Rate Per

Minimum Log Level

Enabled

5000

100

1

O

second v

warning v

Hide Advanced Config

_images/gcp_02.jpg
Google Cloud Platform | B dianomic

Dashboard

@ Page notviewable for organizations. To view this page, select a project. SELECT PROJECT CREATE PROJECT

_images/sqlite_storage_configuration.jpg
Advanced

» Scheduler
» Senvice Monitor
~ storage

» salite

Storage Plugin &

Purge Exclusions

Pool

No. Readings per database
No. databases to allocate in advance
Database allocation threshold

Database allocation size

_images/gcp_01.jpg
o—0

Plugin & Name

Project ID

The GCP Region
Registry ID
Device ID

Key Name

JWT Algorithm

Data Source

Back

Review Configuration

fledge-demo
us-centrall v
fledge

demo
fledge_private
RS256 v

readings v

Done

_images/splunk_1.jpg
o—0 (2]

Plugin & Name

URL

Source

Splunk authorisation token
Apply Filter

Filter Rule

Back

Review Configuration Done

http://splunk:8088/services/collector/event
readings v

42b66064-2625.+7u-o-

378021038

0

_images/filter_4.jpg
sinusoid

5 minutes Graph Summary

I sinusoid N LogSine

11:17:44 101814 111844 111914 11:19:44 112014 11:2044 112114 112144 112214 11:22:44

_images/sinusoid_advanced.jpg
Sine South Service

Asset name sinusoid
Hide Advanced Config
Maximum Reading Latency 5000
(mS)
Maximum buffered Readings 100
Reading Rate ‘ 10/ <
Throttle
Reading Rate Per second ¥
Minimum Log Level warning v
Enabled v

Applications @

Cancel

_images/filter_3.jpg
Sine South Service

o— 0

Plugin Name Review Configuration

Datapoint Name LogSine

Expression to apply log(sinusoid)

Enabled

Previous

_images/sinusoid.jpg
. 2) e

Plugin & Service Name Review Configuration Done

Asset name sinusoid

Previous

_images/filter_6.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

= Location

= MyExpression

Service Info http://localhost:37799

Export Readings Delete Service

_images/slack.jpg
Today New

MarkDemo A% 11:31 AM
Above0.5

ALERT for ruleAbove0.5Notification has triggered
The value of the sinusoid is greater than 0.5

Jot something down

| B I &

_images/filter_5.jpg
Sine South Service

Asset name sinusoid

Show Advanced Config
Enabled

Applications @

= MyExpression

= Location

Service Info http://localhost:37799

Export Readings Delete Service

_images/sinusoid_output.jpg
sinusoid

10 minutes Summary

I sinusoid

-1.0
09:49:23 09:49:53 09:50:23 09:50:53 09:51:23 09:51:53 09:52:23 09:52:53 09:53:23 09:53:53 09:54:23 09:54:53 09:55:23 09:55:53 09:56:23 Of

_images/filter_7.jpg
Sine South Service

Enabiea

Applications @

= Location

Metadata to add

"location": "London"

Enabled

= MyExpression

_images/06_dht11_tags_in_PI.jpg
Console Root.
= rsenves

& § wvavrookeo

(5] Catalogs

tag time. index value status | questionable [substituted [annotated | annotations -
¥ [orf_tianslator_0001. measurement_dhtT1. humidity 12/29/2017 12.45:08 PM 182 0| 0| 0| 0|
o vonltor 00T messtement_cH emperars TR T2AS B 118 0 0 -
o vonltor 00T messtement_cH T emperas T2 O e 0 0 -
o vonlto 0001 meastement_ch T huidly T2 T2 s 0 0 -
o vonltor 00T messtement_cH emperars T2 e 0 0 -
o vonltor 00T messtement_cH T emperas T2 T P T 0 0 -
o vonlto 0001 meastement_ch T huidly T2 P st 0 0 -
o vonlto_0001 meastement_ch T hridly T2 jiES 0 0 -
o vonlto_0001 meastement_ch T hridly T2 0 P jiE] 0 0 -
o vonlto_0001 meastement_ch T hridly T2 it 0 0 -
o vonlto_0001 meastement_ch T hridly TS24 P jiE] 0 0 -
o vonlto_0001 meastement_ch T hridly TS24 P jiE] 0 0 -
o vonlto_0001 meastement_ch T hridly TSATIZAETIPN it 0 0 -
o vonlto_0001 meastement_ch T hridly T2 it 0 0 -
o vonlto_0001 meastement_ch T hridly TS24 28 bkl 0 0 -
o vonlto_0001 meastement_ch T hridly TS24 5 P it 0 0 -
o vonlto_0001 meastement_ch T hridly T2 it 0 0 -
o vonlto 0001 meastement_chT1 hridly T2 bk 0 0 -
o vonltor 00T messtement_cH emperars TS24 25 P T 0 0 -
o vonltor 00T messtement_cH T emperas TS24 2T P Tl 0 0 -
o vonltor 00T messtement_cH T emperas TRATTZ4 1hie 0 0 -
o vonlto 0001 meastement_ch T huidly T2 e 0 0 -
o vonlto_0001 meastement_ch T hridly T2 T2 jiE] 0 0 -
o vonlto_0001 meastement_ch T hridly T 25T6 P bk 0 0 -
o vonlto_0001 meastement_ch T hridly T2 P jiE] 0 0 -
o vonlto 0001 meastement_chT1 hridly T2 bk 0 0 -
o vonltor 00T messtement_cH emperars TATTZSTAT P T 0 0 -
o vonltor 00T messtement_cH T emperas T2 Tl 0 0 -
o vonltor 00T messtement_cH T emperas TRATTIZ5T6 P i 0 0 -
o vonltor 00T messtement_cH T emperas TATT2524 P] 0 0 -
o vonltor 00T messtement_cH T emperas TAT25 5 P Tl 0 0 -
o vonltor 00T messtement_cH T emperas TAT25 2T P i 0 0 -
o vonltor 00T messtement_cH T emperas TRAT25 Tl 0 0 -
o vonltor 00T messtement_cH T emperas T2 i 0 0 -
o vonltor 00T messtement_cH T emperas T2] 0 0 -
o vonltor 00T messtement_cH T emperas T 25 A P Tl 0 0 -
o vonltor 00T messtement_cH T emperas T2 i 0 0 -
o vonltor 00T messtement_cH T emperas T2 T P] 0 0 -
o vonltor 0001 messtement_cH T emperas T2 T2 1E] 7 9 - =
SELECT *hom a2 WHERE tag I anl_varsat_ 0001 messpemert_chi 17 GFOER BY 21 2|
=

_images/AX8.jpg

_images/AX8_1.jpg
o———0O

Plugin & Service Name

Asset Name

Server Address

Port

Slave ID

Review Configuration

AX8

Done

192.168.0.48

502

Previous

_images/Address.jpg
Project » PLC_1 [CPU 1212C DUDCRIy]

[& Topology view gy Network view

L [GUT2120) EIEERY

103 102 101

Rack_0

SIEMENS SIMATICS

%/ Diagnostics.
General | I0tags | System constants | Texts
General [l eornet ada A
Ethemet addresses thermet addresses
Time synchronization Interface networked with
Operating mode
~ Advanced options Subnet: [PNIE_1
Interface options
~ Real time settings
10 communicaton e
Real time options §
~ Pore[x1 P1] @ SetIP address in the project
General 4
T IPaddress: [192 1680 15
Port options Subnetmask: | 255 . 255 . 255 .0
[— Bl
Routeraddress: [0_0 0 0

O 1P sddress i set directyat he device

PROFINET

_images/GETPUT.jpg
Project Edit View
f (4 B save project

Insert Online Options

X &

Tools Window Help.
X9:c: ZMER

T & Goonine ¥ Gooffine

i

2 1] [Searchin projece |

[& Topology view

[y Network view

[I¥ Device view

B | d¢ [recricruizizg

®(gHE

~ 1 Projectt
B Add new device
sh Devices & netorks
< (I8 PLC_1 [CPU1212C DGIDGR
Y Device configuration
4] online & disgnostics
~ 2 Program blocks
B Add new block
4 Main [0B1]
@ Dats_block_1 [081]
» [Technology objects
» [Bxceml source fies
~ @ rcsgs
% show sl tags
B Add newtag tsble
% Default tag table [32]
~ [Lc dsta tpes
5 Add new data tpe
» [l atch snd force tables
» [5g Oniine backups
» [Traces
» [OFC UA communication
» [Device prosy dats
5§ Program info
& FLCalam textis
» [18 Local modules
» I Ungrouped devces
Securiy setings
» [Crossdevice functions
» (4 Common dsta

» [5]) Documentation settings
v [Details view

I} Device confguration
4] Online & diagnostics
I Frogram blocks

1 [CPU 1212C DUDURIy]

|
1
pa—

(3 TR F)

I Technology objects
Extemal source fles

| General [10tags [System constants Texts
Real ime options |4] [+
~ Port X1 P1] Access level Access Access permi
General M Read wite Password
Portinterconnec. @ Full access (no protection) v v v I~
Port options O Read access v v
Web server access. O HM access v
» DIsiDg 6 @ access icomplet= pratechin)
> A2
» High speed counters (HSO)
» Pulse generators (PTOIPYNY
ey Fullaccess (noprotection):)
A Portal users and HM applications will have access to allfunctions.
Cycle e ot

Communication load
System and clock memory.
» Webserver

Mullingual support
Time of day.

‘Access level

Connection mechanisms
Centficate manager
Securityevent
External load memory

» opcua

~ Advanced configuration
DNS configuration
Configuration control

Connection resources.

Overview ofaddresses
» Runtime licenses

¥

Connection mechanisms

0 Permitaccess with PUTGET commarication fom remote partner

Certificate manager

Global security settings

The global security settings for the certificate manager are not enabled.
Onlylimited functionality s available.

_images/PI_connectors.jpg
%) 192.168.2.101 - Remote Desktop Connection

T,
/@ P1Data Collection Manager X \\
v/)

s X
ES =T

<« C | @ Secure | hitps://win-4m7odkbOrh2:546 1/ui/config

Relays

n Manager

@ Destinations @

Bops (@ PLData Colectionon. @ P1ison
Components Routing

Fiter Co.._ Y Data Sources Connectors |
[y — . Add an OMF Application
Connectors -

Relays o

/A WIN-4M7ODKBORH2
Destinations B

@ WIN-4M7ODKBORH2 P Server

Eistart,

A WINAM7OD.

@ Win-am70D.

LB >eJ S 0RE N

& Edit Routing Configuration

-

aQax/o 0

Overview

Use this application to set up, maintain, and manage
your PI Cannectar data flow

The Components list shows the data sources,
connectors, relays, and destinations set up in your data
flow

The Routing area shows how the Components are
connected to each other to get data from data sources to
destinations

This pane shows contextual information about the iterms

you select. To clear your selection and see this overview,
click in any open area

Less

Tasks

) Add a connector

Navigate to the connector app to initialize 2
connection. Click here to access the connection
string

/A WINAM7ODKBORK2: No Connectors
Route connectors to this relay.

o743

[% oy

_images/PI_connectors1.jpg
%) 192.168.2.101 - Remote Desktop Connection

T,
/@ P1Data Collection Manager X \\
v/)

s X
ES =T

<« C | @ Secure | hitps://win-4m7odkbOrh2:546 1/ui/config

Relays

n Manager

@ Destinations @

Bops (@ PLData Colectionon. @ P1ison
Components Routing

Fiter Co.._ Y Data Sources Connectors |
[y — . Add an OMF Application
Connectors -

Relays o

/A WIN-4M7ODKBORH2
Destinations B

@ WIN-4M7ODKBORH2 P Server

Eistart,

A WINAM7OD.

@ Win-am70D.

LB >eJ S 0RE N

& Edit Routing Configuration

-

aQax/o 0

Overview

Use this application to set up, maintain, and manage
your PI Cannectar data flow

The Components list shows the data sources,
connectors, relays, and destinations set up in your data
flow

The Routing area shows how the Components are
connected to each other to get data from data sources to
destinations

This pane shows contextual information about the iterms

you select. To clear your selection and see this overview,
click in any open area

Less

Tasks

) Add a connector

Navigate to the connector app to initialize 2
connection. Click here to access the connection
string

/A WINAM7ODKBORK2: No Connectors
Route connectors to this relay.

o743

[% oy

_images/PI_connect.jpg
%5 192.168.2:101 - Remote Desktop Connection

i X
\ lol@] =
/@ PIData Collection Manager X \\ [all=lEl =
<« C | @ Secure | https://win-4m7odkbOrh2: 546 1/Li/tasks/Omfapp/6 2354cBf-4ae 1-4423-9¢2d-004197f7cb30 Q#%| 0 0 &

fops (@ PrDataColection i @ PV

Pl Data Collection Manager -3

Components Routing ~ foglamplab OMF Details

Fiter Co... Y Data Sources Connectors i Relays @ Destinations @ Configuration Diagnostics

Data Sources - °| Status =
Connectors > B @ o @ WD || @ rtng conurson Ho Roters

= Not Registered
~ foglamplab foglarmp -—
@ Add Relay Distinvation No relays are connected to this connector. To select one

. o mord relays to 5ceive dats from this conneciar click
Relays Configine Fouting

@ WIN-4M7ODKBORH2

Destinations ~ Configure Routing

WIN- Pl
© WoDKEDRHD Server

Narme.

foglarmpiab

~| OMF App Type

Configuration Tasks for foglamplab [STSITIEEEO N <o Configuration || L0

Configure Routing Configure Data Desciption

v Select or Add a Relay. ' Set up Destination Data Settings (requires Relay and foglarmp iab test
Destination)

Access Token Expiration

Doss not expite

P B e

e B 5 @ 95 0RE @

_images/PI_connect1.jpg
%5 192.168.2:101 - Remote Desktop Connection

i X
\ lol@] =
/@ PIData Collection Manager X \\ [all=lEl =
<« C | @ Secure | https://win-4m7odkbOrh2: 546 1/Li/tasks/Omfapp/6 2354cBf-4ae 1-4423-9¢2d-004197f7cb30 Q#%| 0 0 &

fops (@ PrDataColection i @ PV

Pl Data Collection Manager -3

Components Routing ~ foglamplab OMF Details

Fiter Co... Y Data Sources Connectors i Relays @ Destinations @ Configuration Diagnostics

Data Sources - °| Status =
Connectors > B @ o @ WD || @ rtng conurson Ho Roters

= Not Registered
~ foglamplab foglarmp -—
@ Add Relay Distinvation No relays are connected to this connector. To select one

. o mord relays to 5ceive dats from this conneciar click
Relays Configine Fouting

@ WIN-4M7ODKBORH2

Destinations ~ Configure Routing

WIN- Pl
© WoDKEDRHD Server

Narme.

foglarmpiab

~| OMF App Type

Configuration Tasks for foglamplab [STSITIEEEO N <o Configuration || L0

Configure Routing Configure Data Desciption

v Select or Add a Relay. ' Set up Destination Data Settings (requires Relay and foglarmp iab test
Destination)

Access Token Expiration

Doss not expite

P B e

e B 5 @ 95 0RE @

_images/S7-1212.jpg

_images/abb_01.jpg
0o————0®

Plugin & Service Name Review Configuration Done
ABB Assets 1v {
2v "assets": [
3 wn
4 1
5 }
ABB Service api.smartsensor.abb.com
Username FogLAMP
Auth. Key
Asset Structure Single Asset v

Previous

_images/PI_token.jpg
%5, 1921682101 - Remote Desktop Connection

Yoy
/@ Proata Colecion wansger x _\
|/

< C | @ Secure | https:/win-4m7odkbOrh2:546 1/ tasks/Omfapp/ds 75868 3-bReb-db 3c-8d94-826b6 78be3zb Q%o 0

1 Agps (@ PLOsta Coletion M ©) PLViion

Pl Data Collection Manager -3

Components Routing v foglamplab OMF Details
FiterCo... Y| Filter Options | Data Sources Connectors i Relays @ Destinations @ Configuration Diagnastics
| TregEmRD .
Data Sources &
foglamplab
v fodlamplab ey @ WiN4M7OD... =¥ @ WIN-4M7OD, OMF App Type
Connectors B
foglamp
v foglamplab foglamp.
Description
Relays B

foglernp lab test

@ WIN-4M7ODKEORH2
Access Token Expiration
Destinations B

Does rot expire

WIN- Pl
© WoDKEDRHD Serer

Edit H

Producer Token/D
uid=ci5758683-bBeb-453c-8404-826067Bbe32b8crt=20
Relay Ingress URLI
hitps//sin-4mTodkb0rh?. 5460 ingress/messages

Expiration Date
12/31/9999, 01:00:00

Revoked
-| false

& EditRouting Configuration for foglamplab | Less

| B T H @ 5 OREOPAE N

[%) oy

_images/PI_token1.jpg
%5, 1921682101 - Remote Desktop Connection

Yoy
/@ Proata Colecion wansger x _\
|/

< C | @ Secure | https:/win-4m7odkbOrh2:546 1/ tasks/Omfapp/ds 75868 3-bReb-db 3c-8d94-826b6 78be3zb Q%o 0

1 Agps (@ PLOsta Coletion M ©) PLViion

Pl Data Collection Manager -3

Components Routing v foglamplab OMF Details
FiterCo... Y| Filter Options | Data Sources Connectors i Relays @ Destinations @ Configuration Diagnastics
| TregEmRD .
Data Sources &
foglamplab
v fodlamplab ey @ WiN4M7OD... =¥ @ WIN-4M7OD, OMF App Type
Connectors B
foglamp
v foglamplab foglamp.
Description
Relays B

foglernp lab test

@ WIN-4M7ODKEORH2
Access Token Expiration
Destinations B

Does rot expire

WIN- Pl
© WoDKEDRHD Serer

Edit H

Producer Token/D
uid=ci5758683-bBeb-453c-8404-826067Bbe32b8crt=20
Relay Ingress URLI
hitps//sin-4mTodkb0rh?. 5460 ingress/messages

Expiration Date
12/31/9999, 01:00:00

Revoked
-| false

& EditRouting Configuration for foglamplab | Less

| B T H @ 5 OREOPAE N

[%) oy

_images/abb_02.jpg
Asset Structure v Single Asset |

Group Assets

Individual Asset

_static/up.png

_static/up-pressed.png

_images/add_notification_service.jpg
=+, FogLAMP ® aj/FogLAMP Received: 6,246 Sent: 0 Uptime: 00:18:14 0]

Dashboard

Assets & Readings Notification service is not added and enabled. add & enable now

South

N&Fth Notifications 2 Create Notification Instance + £

Notifications

Configuration

Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings .
© 2020 DIANOMIC SYSTEMS INC. All Rights Reserved.

Q

_images/add_user.jpg
Create User

_images/alexa_1.jpg
Notification Instance

Access Code
Title

Enabled

Rule

Delivery Channel

Done

The level in tank 15 s below 10%

Previous

_images/am2315_1.jpg

_images/admin_api.jpg
+i+. FogLAMP
Dashboard

Assets & Readings
South

North

Notifications

Schedules
Certificate Store
Backup & Restore

Logs

Audit
Notifications
Packages
System

Tasks

Support

Settings

® aj/FogLAMP

Received: 6,246 Sent: 0

General

» Installation
» Admin API
» FogLAMP Service

Uptime: 00:22:14

FogLAMP Admin and User REST APl &

Enable HTTP

HTTP Port

HTTPS Port
Certificate Name
Authentication
Authentication method
Auth Certificate

Allow Ping

Password Expiry Days

Auth Providers

8081

1995

foglamp

optional v

any v

ca

0
1lv |(
2v "providers":
3 "username",
4 "1dap"
5 1
6 }

[

Q

_images/advanced_south.jpg
Hide Advanced Config

Maximum Reading Latency (mS) 5000

Maximum buffered Readings 100

o

Reading Rate 1

Throttle o

_images/app_2.jpg
Add Server

To configure, please enter the Server IP,
User Name, Password and Port.

192.168.0.34

flir

123456

8883

_images/app_3.jpg
Server List 1

Select a Server from the list or add a

new Server

_images/am2315_2.jpg
o—

Plugin & Service Name Review Configuration
Asset Name am2315/%M/
12C Address 0x5C

Previous

Done

_images/app_1.jpg
f”

14:58 7)

$FLIR

LOCAL SERVER

STANDALONE

HISTORICAL
SENSORS

© FLIR System - Version 1.1.32

_images/rate_1.jpg
Ly €)

Plugin Name Review Configuration
Trigger expression crest> 14

Terminate on Expression v

End Expression

Full rate time (mS) o

Pre-trigger time (mS) 1

Reduced collection rate 1

Rate Units per minute v
Exclusions i
2 "exclusions": ["speed"]
3}
Enabled [

Previous

_images/random_2.jpg
randomwalk

10 minutes v Graph Summary

I endomwalk

100

9%

%0

85

80

75

70
00:26:42 09:27:12 09:27:42 00:28:12 09:28:42 09:29:12 00:29:42 00:30:12 09:30:42 09:31:12 00:31:42 09:32:12 09:32:42 09:33:12 00:33:42 09:34:12 09:34:42 00:36:12 00:95:42 09:36:12

_images/rate_3.jpg
Reduced collection rate 1

Rate Units

per hour
Exclusions peridey)

per second J

_images/rate_2.jpg
Terminate on

_images/python35_1.jpg
o— 0

Plugin Name Review Configuration
Python script 1 [# generate exponential moving average
2
3 import json
5 # exponential moving average rate default value: include 7%
of current value
6 rate = 0.07
7 # latest ema value
8 latest = None
9
10 # get configuration if provided.
11 # set this JSON string in configuration:
12 # {"rate":0.07)
emapy

Choose Files | No file chosen

Configuration 1 [{"rate” : 0.75)

Enabled

5]

_images/pt100_4wire.jpg

_images/python_1.jpg
Sine South Service

o— 0

Plugin Name Review Configuration

Python code 1 reading[b'sinusoid'] = reading[b'sinusoid'] * 2 + 15

Enabled

Previous

_images/python35_11.jpg
o— 0

Plugin Name Review Configuration
Python script 1 [# generate exponential moving average
2
3 import json
5 # exponential moving average rate default value: include 7%
of current value
6 rate = 0.07
7 # latest ema value
8 latest = None
9
10 # get configuration if provided.
11 # set this JSON string in configuration:
12 # {"rate":0.07)
emapy

Choose Files | No file chosen

Configuration 1 [{"rate” : 0.75)

Enabled

5]

_images/random_1.jpg
o——M 0@ (=]

Plugin & Service Name Review Configuration Done

Asset Name Random

Previous

_images/python_11.jpg
o © o

Notification Instance Rule Delivery Channel Done

Python script from time import sleep

from envirophat import leds

def flash_leds(message):

for count in range(4):
leds.on()
sleep(0.5)
leds.off()
sleep(0.5)

flash Jeds.py

Choose Files [flash_leds.py

Con

uration 1o

Enabled [E]

Previous

_images/random_11.jpg
B

Plugin & Service Name Review Configuration
Asset name randomwalk
Minimum Value 10
Maximum Value 100

Previous

Done

_images/asset.jpg
o— 0

Plugin Name Review Configuration
Asset rules =
~2 'rules": [
~3 {
4 "asset_name" : "temperature",
5 "action" : "rename",
6 "new_asset_name" : "abient"
7 4
8 1
9}
Enabled

Previous

_images/asset_1.jpg
Notification Instance

Asset
Description

Enabled

Previous

Rule

event

Notification alert

u]

Delivery Channel

Done

_images/app_4.jpg
Gateway Settings

Gateway Information

Gateway ID
GWG657EA2

Name

\J
GW657EA2 V 4

Server
unspecified

Sampling Rate
1 minute

WiFi Router
MILLEND?2

Firmware Version

1.0.3

_images/average_2.jpg
Notification Instance

Asset
Deviation %
Direction
Average

EMA Factor

Previous

Rule

temperature
10
Simple Moving Average

10

(2]

Delivery Channel

v

Done

_images/average_3.jpg
Deviation % Above Average

Below Average

Direction

_images/authentication.jpg
Certificate Name fledge

Authentication

optional
Authentication password ¥
method

_images/average_1.jpg
0o——0 (2] (<]

Notification Instance Rule Delivery Channel Done

Rule Plugin Average

OutOfBound

Trigger if the current value deviates from the moving average by more than a

SimpleExpression | defned percentage

Threshold

Previous

_images/botfather.jpg
nars e
o BotFather &

Inewbot 1035

Alright, a new bot. How are we going to
callit? Please choose a name for your
bot.

Fledge 1035,

Good. Now let's choose a username for
your bot. It must end in “bot". Like this,
for example: TetrisBot or tetris_bot.

FledgeBot 5.

Sorry, this username is already taken.
Please try something different.

MyFledgrBot 150,

Done! Congratulations on your new

bot. You will find it at tme/

MyFledgrBot. You can now add a
description, about section and profile
picture for your bot, see /help for a list

of commands. By the way, when you've
finished creating your cool bot, ping

our Bot Support if you want a better
username for it. Just make sure the bot

is fully operational before you do this.

@ (XY

_images/average_4.jpg
Average v Simple M
Exponential Moving Average

EMA Factor 10

_images/beckhoff_1.jpg
(——0

Plugin & Service Name Review Configuration Done
Asset Name beckhoff
EtherCAT Server ads-server
Remote Netld 192.168.0.231.1.1
Protocol Automatic ¥

Source Netld

TwinCAT Map 1v | {
2v "items": [
3v {
4 "datapoint": "engine",
5 "name": "MAIN.engine"
6 }
7 1
8 }

_images/profile.jpg
+i+. FogLAMP
Dashboard

Assets & Readings
South

North
Notifications
